Copied to
clipboard

G = C6xHe3:C2order 324 = 22·34

Direct product of C6 and He3:C2

direct product, non-abelian, supersoluble, monomial

Aliases: C6xHe3:C2, C33:11D6, (C6xHe3):4C2, He3:6(C2xC6), (C2xHe3):5C6, (C32xC6):5S3, C32:4(S3xC6), (C3xHe3):9C22, (C3xC6):2(C3xS3), C3.6(C6xC3:S3), C6.14(C3xC3:S3), (C3xC6).26(C3:S3), C32.13(C2xC3:S3), SmallGroup(324,145)

Series: Derived Chief Lower central Upper central

C1C3He3 — C6xHe3:C2
C1C3C32He3C3xHe3C3xHe3:C2 — C6xHe3:C2
He3 — C6xHe3:C2
C1C3xC6

Generators and relations for C6xHe3:C2
 G = < a,b,c,d,e | a6=b3=c3=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, cd=dc, ce=ec, ede=d-1 >

Subgroups: 592 in 184 conjugacy classes, 38 normal (12 characteristic)
C1, C2, C2, C3, C3, C3, C22, S3, C6, C6, C6, C32, C32, C32, D6, C2xC6, C3xS3, C3xC6, C3xC6, C3xC6, He3, He3, C33, S3xC6, C62, He3:C2, C2xHe3, C2xHe3, S3xC32, C32xC6, C3xHe3, C2xHe3:C2, S3xC3xC6, C3xHe3:C2, C6xHe3, C6xHe3:C2
Quotients: C1, C2, C3, C22, S3, C6, D6, C2xC6, C3xS3, C3:S3, S3xC6, C2xC3:S3, He3:C2, C3xC3:S3, C2xHe3:C2, C6xC3:S3, C3xHe3:C2, C6xHe3:C2

Smallest permutation representation of C6xHe3:C2
On 54 points
Generators in S54
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)
(7 42 33)(8 37 34)(9 38 35)(10 39 36)(11 40 31)(12 41 32)(13 52 21)(14 53 22)(15 54 23)(16 49 24)(17 50 19)(18 51 20)
(1 29 45)(2 30 46)(3 25 47)(4 26 48)(5 27 43)(6 28 44)(7 33 42)(8 34 37)(9 35 38)(10 36 39)(11 31 40)(12 32 41)(13 52 21)(14 53 22)(15 54 23)(16 49 24)(17 50 19)(18 51 20)
(1 35 49)(2 36 50)(3 31 51)(4 32 52)(5 33 53)(6 34 54)(7 14 43)(8 15 44)(9 16 45)(10 17 46)(11 18 47)(12 13 48)(19 30 39)(20 25 40)(21 26 41)(22 27 42)(23 28 37)(24 29 38)
(7 14)(8 15)(9 16)(10 17)(11 18)(12 13)(19 39)(20 40)(21 41)(22 42)(23 37)(24 38)(31 51)(32 52)(33 53)(34 54)(35 49)(36 50)

G:=sub<Sym(54)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54), (7,42,33)(8,37,34)(9,38,35)(10,39,36)(11,40,31)(12,41,32)(13,52,21)(14,53,22)(15,54,23)(16,49,24)(17,50,19)(18,51,20), (1,29,45)(2,30,46)(3,25,47)(4,26,48)(5,27,43)(6,28,44)(7,33,42)(8,34,37)(9,35,38)(10,36,39)(11,31,40)(12,32,41)(13,52,21)(14,53,22)(15,54,23)(16,49,24)(17,50,19)(18,51,20), (1,35,49)(2,36,50)(3,31,51)(4,32,52)(5,33,53)(6,34,54)(7,14,43)(8,15,44)(9,16,45)(10,17,46)(11,18,47)(12,13,48)(19,30,39)(20,25,40)(21,26,41)(22,27,42)(23,28,37)(24,29,38), (7,14)(8,15)(9,16)(10,17)(11,18)(12,13)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(31,51)(32,52)(33,53)(34,54)(35,49)(36,50)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54), (7,42,33)(8,37,34)(9,38,35)(10,39,36)(11,40,31)(12,41,32)(13,52,21)(14,53,22)(15,54,23)(16,49,24)(17,50,19)(18,51,20), (1,29,45)(2,30,46)(3,25,47)(4,26,48)(5,27,43)(6,28,44)(7,33,42)(8,34,37)(9,35,38)(10,36,39)(11,31,40)(12,32,41)(13,52,21)(14,53,22)(15,54,23)(16,49,24)(17,50,19)(18,51,20), (1,35,49)(2,36,50)(3,31,51)(4,32,52)(5,33,53)(6,34,54)(7,14,43)(8,15,44)(9,16,45)(10,17,46)(11,18,47)(12,13,48)(19,30,39)(20,25,40)(21,26,41)(22,27,42)(23,28,37)(24,29,38), (7,14)(8,15)(9,16)(10,17)(11,18)(12,13)(19,39)(20,40)(21,41)(22,42)(23,37)(24,38)(31,51)(32,52)(33,53)(34,54)(35,49)(36,50) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54)], [(7,42,33),(8,37,34),(9,38,35),(10,39,36),(11,40,31),(12,41,32),(13,52,21),(14,53,22),(15,54,23),(16,49,24),(17,50,19),(18,51,20)], [(1,29,45),(2,30,46),(3,25,47),(4,26,48),(5,27,43),(6,28,44),(7,33,42),(8,34,37),(9,35,38),(10,36,39),(11,31,40),(12,32,41),(13,52,21),(14,53,22),(15,54,23),(16,49,24),(17,50,19),(18,51,20)], [(1,35,49),(2,36,50),(3,31,51),(4,32,52),(5,33,53),(6,34,54),(7,14,43),(8,15,44),(9,16,45),(10,17,46),(11,18,47),(12,13,48),(19,30,39),(20,25,40),(21,26,41),(22,27,42),(23,28,37),(24,29,38)], [(7,14),(8,15),(9,16),(10,17),(11,18),(12,13),(19,39),(20,40),(21,41),(22,42),(23,37),(24,38),(31,51),(32,52),(33,53),(34,54),(35,49),(36,50)]])

60 conjugacy classes

class 1 2A2B2C3A···3H3I···3T6A···6H6I···6T6U···6AJ
order12223···33···36···66···66···6
size11991···16···61···16···69···9

60 irreducible representations

dim111111222233
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6He3:C2C2xHe3:C2
kernelC6xHe3:C2C3xHe3:C2C6xHe3C2xHe3:C2He3:C2C2xHe3C32xC6C33C3xC6C32C6C3
# reps12124244881212

Matrix representation of C6xHe3:C2 in GL5(F7)

30000
03000
00100
00010
00001
,
66000
10000
00100
00020
00004
,
10000
01000
00200
00020
00002
,
10000
01000
00010
00001
00100
,
10000
66000
00100
00001
00010

G:=sub<GL(5,GF(7))| [3,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[6,1,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,6,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C6xHe3:C2 in GAP, Magma, Sage, TeX

C_6\times {\rm He}_3\rtimes C_2
% in TeX

G:=Group("C6xHe3:C2");
// GroupNames label

G:=SmallGroup(324,145);
// by ID

G=gap.SmallGroup(324,145);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,579,2164,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<