# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3×C9

Direct product G=N×Q with N=C2×C6 and Q=C3×C9
dρLabelID
C3×C6×C18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C2×C6 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C3×C9) = A4×C3×C9φ: C3×C9/C9C3 ⊆ Aut C2×C6108(C2xC6):1(C3xC9)324,126
(C2×C6)⋊2(C3×C9) = C32×C3.A4φ: C3×C9/C32C3 ⊆ Aut C2×C6162(C2xC6):2(C3xC9)324,133

Non-split extensions G=N.Q with N=C2×C6 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C3×C9) = A4×C27φ: C3×C9/C9C3 ⊆ Aut C2×C61083(C2xC6).1(C3xC9)324,42
(C2×C6).2(C3×C9) = C27⋊A4φ: C3×C9/C9C3 ⊆ Aut C2×C61083(C2xC6).2(C3xC9)324,43
(C2×C6).3(C3×C9) = C62.11C32φ: C3×C9/C9C3 ⊆ Aut C2×C6162(C2xC6).3(C3xC9)324,47
(C2×C6).4(C3×C9) = C62.16C32φ: C3×C9/C9C3 ⊆ Aut C2×C6108(C2xC6).4(C3xC9)324,52
(C2×C6).5(C3×C9) = C3×C9.A4φ: C3×C9/C32C3 ⊆ Aut C2×C6162(C2xC6).5(C3xC9)324,44
(C2×C6).6(C3×C9) = C62.C9φ: C3×C9/C32C3 ⊆ Aut C2×C6543(C2xC6).6(C3xC9)324,45
(C2×C6).7(C3×C9) = C9×C3.A4φ: C3×C9/C32C3 ⊆ Aut C2×C6162(C2xC6).7(C3xC9)324,46
(C2×C6).8(C3×C9) = C62.12C32φ: C3×C9/C32C3 ⊆ Aut C2×C6162(C2xC6).8(C3xC9)324,48
(C2×C6).9(C3×C9) = C62⋊C9φ: C3×C9/C32C3 ⊆ Aut C2×C654(C2xC6).9(C3xC9)324,59
(C2×C6).10(C3×C9) = C22×C32⋊C9central extension (φ=1)108(C2xC6).10(C3xC9)324,82
(C2×C6).11(C3×C9) = C22×C9⋊C9central extension (φ=1)324(C2xC6).11(C3xC9)324,83
(C2×C6).12(C3×C9) = C22×C27⋊C3central extension (φ=1)108(C2xC6).12(C3xC9)324,85

׿
×
𝔽