Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic7

Direct product G=N×Q with N=C6 and Q=C2×Dic7
dρLabelID
C2×C6×Dic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C6 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic7) = C2×S3×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C6168C6:1(C2xDic7)336,154
C62(C2×Dic7) = C22×Dic21φ: C2×Dic7/C2×C14C2 ⊆ Aut C6336C6:2(C2xDic7)336,202

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic7) = S3×C7⋊C8φ: C2×Dic7/Dic7C2 ⊆ Aut C61684C6.1(C2xDic7)336,24
C6.2(C2×Dic7) = D6.Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C61684C6.2(C2xDic7)336,27
C6.3(C2×Dic7) = Dic3×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C6336C6.3(C2xDic7)336,41
C6.4(C2×Dic7) = D6⋊Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C6168C6.4(C2xDic7)336,43
C6.5(C2×Dic7) = C14.Dic6φ: C2×Dic7/Dic7C2 ⊆ Aut C6336C6.5(C2xDic7)336,47
C6.6(C2×Dic7) = C2×C21⋊C8φ: C2×Dic7/C2×C14C2 ⊆ Aut C6336C6.6(C2xDic7)336,95
C6.7(C2×Dic7) = C84.C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C61682C6.7(C2xDic7)336,96
C6.8(C2×Dic7) = C4×Dic21φ: C2×Dic7/C2×C14C2 ⊆ Aut C6336C6.8(C2xDic7)336,97
C6.9(C2×Dic7) = C84⋊C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C6336C6.9(C2xDic7)336,99
C6.10(C2×Dic7) = C42.38D4φ: C2×Dic7/C2×C14C2 ⊆ Aut C6168C6.10(C2xDic7)336,105
C6.11(C2×Dic7) = C6×C7⋊C8central extension (φ=1)336C6.11(C2xDic7)336,63
C6.12(C2×Dic7) = C3×C4.Dic7central extension (φ=1)1682C6.12(C2xDic7)336,64
C6.13(C2×Dic7) = C12×Dic7central extension (φ=1)336C6.13(C2xDic7)336,65
C6.14(C2×Dic7) = C3×C4⋊Dic7central extension (φ=1)336C6.14(C2xDic7)336,67
C6.15(C2×Dic7) = C3×C23.D7central extension (φ=1)168C6.15(C2xDic7)336,73

׿
×
𝔽