extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×Dic7) = S3×C7⋊C8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C6 | 168 | 4 | C6.1(C2xDic7) | 336,24 |
C6.2(C2×Dic7) = D6.Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C6 | 168 | 4 | C6.2(C2xDic7) | 336,27 |
C6.3(C2×Dic7) = Dic3×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C6 | 336 | | C6.3(C2xDic7) | 336,41 |
C6.4(C2×Dic7) = D6⋊Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C6 | 168 | | C6.4(C2xDic7) | 336,43 |
C6.5(C2×Dic7) = C14.Dic6 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C6 | 336 | | C6.5(C2xDic7) | 336,47 |
C6.6(C2×Dic7) = C2×C21⋊C8 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.6(C2xDic7) | 336,95 |
C6.7(C2×Dic7) = C84.C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C6 | 168 | 2 | C6.7(C2xDic7) | 336,96 |
C6.8(C2×Dic7) = C4×Dic21 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.8(C2xDic7) | 336,97 |
C6.9(C2×Dic7) = C84⋊C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C6 | 336 | | C6.9(C2xDic7) | 336,99 |
C6.10(C2×Dic7) = C42.38D4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C6 | 168 | | C6.10(C2xDic7) | 336,105 |
C6.11(C2×Dic7) = C6×C7⋊C8 | central extension (φ=1) | 336 | | C6.11(C2xDic7) | 336,63 |
C6.12(C2×Dic7) = C3×C4.Dic7 | central extension (φ=1) | 168 | 2 | C6.12(C2xDic7) | 336,64 |
C6.13(C2×Dic7) = C12×Dic7 | central extension (φ=1) | 336 | | C6.13(C2xDic7) | 336,65 |
C6.14(C2×Dic7) = C3×C4⋊Dic7 | central extension (φ=1) | 336 | | C6.14(C2xDic7) | 336,67 |
C6.15(C2×Dic7) = C3×C23.D7 | central extension (φ=1) | 168 | | C6.15(C2xDic7) | 336,73 |