Extensions 1→N→G→Q→1 with N=C6 and Q=C2xDic7

Direct product G=NxQ with N=C6 and Q=C2xDic7
dρLabelID
C2xC6xDic7336C2xC6xDic7336,182

Semidirect products G=N:Q with N=C6 and Q=C2xDic7
extensionφ:Q→Aut NdρLabelID
C6:1(C2xDic7) = C2xS3xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C6168C6:1(C2xDic7)336,154
C6:2(C2xDic7) = C22xDic21φ: C2xDic7/C2xC14C2 ⊆ Aut C6336C6:2(C2xDic7)336,202

Non-split extensions G=N.Q with N=C6 and Q=C2xDic7
extensionφ:Q→Aut NdρLabelID
C6.1(C2xDic7) = S3xC7:C8φ: C2xDic7/Dic7C2 ⊆ Aut C61684C6.1(C2xDic7)336,24
C6.2(C2xDic7) = D6.Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C61684C6.2(C2xDic7)336,27
C6.3(C2xDic7) = Dic3xDic7φ: C2xDic7/Dic7C2 ⊆ Aut C6336C6.3(C2xDic7)336,41
C6.4(C2xDic7) = D6:Dic7φ: C2xDic7/Dic7C2 ⊆ Aut C6168C6.4(C2xDic7)336,43
C6.5(C2xDic7) = C14.Dic6φ: C2xDic7/Dic7C2 ⊆ Aut C6336C6.5(C2xDic7)336,47
C6.6(C2xDic7) = C2xC21:C8φ: C2xDic7/C2xC14C2 ⊆ Aut C6336C6.6(C2xDic7)336,95
C6.7(C2xDic7) = C84.C4φ: C2xDic7/C2xC14C2 ⊆ Aut C61682C6.7(C2xDic7)336,96
C6.8(C2xDic7) = C4xDic21φ: C2xDic7/C2xC14C2 ⊆ Aut C6336C6.8(C2xDic7)336,97
C6.9(C2xDic7) = C84:C4φ: C2xDic7/C2xC14C2 ⊆ Aut C6336C6.9(C2xDic7)336,99
C6.10(C2xDic7) = C42.38D4φ: C2xDic7/C2xC14C2 ⊆ Aut C6168C6.10(C2xDic7)336,105
C6.11(C2xDic7) = C6xC7:C8central extension (φ=1)336C6.11(C2xDic7)336,63
C6.12(C2xDic7) = C3xC4.Dic7central extension (φ=1)1682C6.12(C2xDic7)336,64
C6.13(C2xDic7) = C12xDic7central extension (φ=1)336C6.13(C2xDic7)336,65
C6.14(C2xDic7) = C3xC4:Dic7central extension (φ=1)336C6.14(C2xDic7)336,67
C6.15(C2xDic7) = C3xC23.D7central extension (φ=1)168C6.15(C2xDic7)336,73

׿
x
:
Z
F
o
wr
Q
<