Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×D11

Direct product G=N×Q with N=C2 and Q=C2×C4×D11
dρLabelID
C22×C4×D11176C2^2xC4xD11352,174


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×D11
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×D11) = C42×D11central extension (φ=1)176C2.1(C2xC4xD11)352,66
C2.2(C2×C4×D11) = C2×C8×D11central extension (φ=1)176C2.2(C2xC4xD11)352,94
C2.3(C2×C4×D11) = C2×C4×Dic11central extension (φ=1)352C2.3(C2xC4xD11)352,117
C2.4(C2×C4×D11) = C4×Dic22central stem extension (φ=1)352C2.4(C2xC4xD11)352,63
C2.5(C2×C4×D11) = C42⋊D11central stem extension (φ=1)176C2.5(C2xC4xD11)352,67
C2.6(C2×C4×D11) = C4×D44central stem extension (φ=1)176C2.6(C2xC4xD11)352,68
C2.7(C2×C4×D11) = C23.11D22central stem extension (φ=1)176C2.7(C2xC4xD11)352,72
C2.8(C2×C4×D11) = C22⋊C4×D11central stem extension (φ=1)88C2.8(C2xC4xD11)352,75
C2.9(C2×C4×D11) = Dic114D4central stem extension (φ=1)176C2.9(C2xC4xD11)352,76
C2.10(C2×C4×D11) = Dic22⋊C4central stem extension (φ=1)352C2.10(C2xC4xD11)352,82
C2.11(C2×C4×D11) = C4⋊C4×D11central stem extension (φ=1)176C2.11(C2xC4xD11)352,86
C2.12(C2×C4×D11) = C4⋊C47D11central stem extension (φ=1)176C2.12(C2xC4xD11)352,87
C2.13(C2×C4×D11) = D44⋊C4central stem extension (φ=1)176C2.13(C2xC4xD11)352,88
C2.14(C2×C4×D11) = C2×C88⋊C2central stem extension (φ=1)176C2.14(C2xC4xD11)352,95
C2.15(C2×C4×D11) = D44.2C4central stem extension (φ=1)1762C2.15(C2xC4xD11)352,96
C2.16(C2×C4×D11) = M4(2)×D11central stem extension (φ=1)884C2.16(C2xC4xD11)352,101
C2.17(C2×C4×D11) = D44.C4central stem extension (φ=1)1764C2.17(C2xC4xD11)352,102
C2.18(C2×C4×D11) = C2×Dic11⋊C4central stem extension (φ=1)352C2.18(C2xC4xD11)352,118
C2.19(C2×C4×D11) = C2×D22⋊C4central stem extension (φ=1)176C2.19(C2xC4xD11)352,122
C2.20(C2×C4×D11) = C4×C11⋊D4central stem extension (φ=1)176C2.20(C2xC4xD11)352,123

׿
×
𝔽