Copied to
clipboard

G = C2×C4×D11order 176 = 24·11

Direct product of C2×C4 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C4×D11, C443C22, C22.2C23, C22.9D22, D22.4C22, Dic113C22, C221(C2×C4), (C2×C44)⋊5C2, C111(C22×C4), (C2×Dic11)⋊5C2, (C2×C22).9C22, C2.1(C22×D11), (C22×D11).2C2, SmallGroup(176,28)

Series: Derived Chief Lower central Upper central

C1C11 — C2×C4×D11
C1C11C22D22C22×D11 — C2×C4×D11
C11 — C2×C4×D11
C1C2×C4

Generators and relations for C2×C4×D11
 G = < a,b,c,d | a2=b4=c11=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 244 in 54 conjugacy classes, 35 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C23, C11, C22×C4, D11, C22, C22, Dic11, C44, D22, C2×C22, C4×D11, C2×Dic11, C2×C44, C22×D11, C2×C4×D11
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, D11, D22, C4×D11, C22×D11, C2×C4×D11

Smallest permutation representation of C2×C4×D11
On 88 points
Generators in S88
(1 54)(2 55)(3 45)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 52)(11 53)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 81)(38 82)(39 83)(40 84)(41 85)(42 86)(43 87)(44 88)
(1 43 21 32)(2 44 22 33)(3 34 12 23)(4 35 13 24)(5 36 14 25)(6 37 15 26)(7 38 16 27)(8 39 17 28)(9 40 18 29)(10 41 19 30)(11 42 20 31)(45 78 56 67)(46 79 57 68)(47 80 58 69)(48 81 59 70)(49 82 60 71)(50 83 61 72)(51 84 62 73)(52 85 63 74)(53 86 64 75)(54 87 65 76)(55 88 66 77)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)

G:=sub<Sym(88)| (1,54)(2,55)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88), (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31)(45,78,56,67)(46,79,57,68)(47,80,58,69)(48,81,59,70)(49,82,60,71)(50,83,61,72)(51,84,62,73)(52,85,63,74)(53,86,64,75)(54,87,65,76)(55,88,66,77), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)>;

G:=Group( (1,54)(2,55)(3,45)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,52)(11,53)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)(44,88), (1,43,21,32)(2,44,22,33)(3,34,12,23)(4,35,13,24)(5,36,14,25)(6,37,15,26)(7,38,16,27)(8,39,17,28)(9,40,18,29)(10,41,19,30)(11,42,20,31)(45,78,56,67)(46,79,57,68)(47,80,58,69)(48,81,59,70)(49,82,60,71)(50,83,61,72)(51,84,62,73)(52,85,63,74)(53,86,64,75)(54,87,65,76)(55,88,66,77), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87) );

G=PermutationGroup([[(1,54),(2,55),(3,45),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,52),(11,53),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,81),(38,82),(39,83),(40,84),(41,85),(42,86),(43,87),(44,88)], [(1,43,21,32),(2,44,22,33),(3,34,12,23),(4,35,13,24),(5,36,14,25),(6,37,15,26),(7,38,16,27),(8,39,17,28),(9,40,18,29),(10,41,19,30),(11,42,20,31),(45,78,56,67),(46,79,57,68),(47,80,58,69),(48,81,59,70),(49,82,60,71),(50,83,61,72),(51,84,62,73),(52,85,63,74),(53,86,64,75),(54,87,65,76),(55,88,66,77)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87)]])

C2×C4×D11 is a maximal subgroup of
D22⋊C8  C42⋊D11  Dic114D4  D22.D4  D22⋊D4  C4⋊C47D11  D44⋊C4  D22.5D4  C42D44  D22⋊Q8  D222Q8  C442D4  D223Q8
C2×C4×D11 is a maximal quotient of
C42⋊D11  C23.11D22  Dic114D4  Dic22⋊C4  C4⋊C47D11  D44⋊C4  D44.2C4  D44.C4

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H11A···11E22A···22O44A···44T
order122222224444444411···1122···2244···44
size1111111111111111111111112···22···22···2

56 irreducible representations

dim1111112222
type++++++++
imageC1C2C2C2C2C4D11D22D22C4×D11
kernelC2×C4×D11C4×D11C2×Dic11C2×C44C22×D11D22C2×C4C4C22C2
# reps141118510520

Matrix representation of C2×C4×D11 in GL3(𝔽89) generated by

8800
0880
0088
,
5500
0880
0088
,
100
001
08847
,
8800
001
010
G:=sub<GL(3,GF(89))| [88,0,0,0,88,0,0,0,88],[55,0,0,0,88,0,0,0,88],[1,0,0,0,0,88,0,1,47],[88,0,0,0,0,1,0,1,0] >;

C2×C4×D11 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_{11}
% in TeX

G:=Group("C2xC4xD11");
// GroupNames label

G:=SmallGroup(176,28);
// by ID

G=gap.SmallGroup(176,28);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,42,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^11=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽