Extensions 1→N→G→Q→1 with N=D22 and Q=C2×C4

Direct product G=N×Q with N=D22 and Q=C2×C4
dρLabelID
C22×C4×D11176C2^2xC4xD11352,174

Semidirect products G=N:Q with N=D22 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D221(C2×C4) = C4×D44φ: C2×C4/C4C2 ⊆ Out D22176D22:1(C2xC4)352,68
D222(C2×C4) = Dic114D4φ: C2×C4/C4C2 ⊆ Out D22176D22:2(C2xC4)352,76
D223(C2×C4) = D44⋊C4φ: C2×C4/C4C2 ⊆ Out D22176D22:3(C2xC4)352,88
D224(C2×C4) = C4×C11⋊D4φ: C2×C4/C4C2 ⊆ Out D22176D22:4(C2xC4)352,123
D225(C2×C4) = C22⋊C4×D11φ: C2×C4/C22C2 ⊆ Out D2288D22:5(C2xC4)352,75
D226(C2×C4) = C2×D22⋊C4φ: C2×C4/C22C2 ⊆ Out D22176D22:6(C2xC4)352,122

Non-split extensions G=N.Q with N=D22 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
D22.1(C2×C4) = D44.2C4φ: C2×C4/C4C2 ⊆ Out D221762D22.1(C2xC4)352,96
D22.2(C2×C4) = D44.C4φ: C2×C4/C4C2 ⊆ Out D221764D22.2(C2xC4)352,102
D22.3(C2×C4) = C42⋊D11φ: C2×C4/C22C2 ⊆ Out D22176D22.3(C2xC4)352,67
D22.4(C2×C4) = C4⋊C47D11φ: C2×C4/C22C2 ⊆ Out D22176D22.4(C2xC4)352,87
D22.5(C2×C4) = C2×C88⋊C2φ: C2×C4/C22C2 ⊆ Out D22176D22.5(C2xC4)352,95
D22.6(C2×C4) = M4(2)×D11φ: C2×C4/C22C2 ⊆ Out D22884D22.6(C2xC4)352,101
D22.7(C2×C4) = C42×D11φ: trivial image176D22.7(C2xC4)352,66
D22.8(C2×C4) = C4⋊C4×D11φ: trivial image176D22.8(C2xC4)352,86
D22.9(C2×C4) = C2×C8×D11φ: trivial image176D22.9(C2xC4)352,94

׿
×
𝔽