Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C2xC10

Direct product G=NxQ with N=C3xC6 and Q=C2xC10
dρLabelID
C2xC6xC30360C2xC6xC30360,162

Semidirect products G=N:Q with N=C3xC6 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C2xC10) = S32xC10φ: C2xC10/C5C22 ⊆ Aut C3xC6604(C3xC6):(C2xC10)360,153
(C3xC6):2(C2xC10) = S3xC2xC30φ: C2xC10/C10C2 ⊆ Aut C3xC6120(C3xC6):2(C2xC10)360,158
(C3xC6):3(C2xC10) = C3:S3xC2xC10φ: C2xC10/C10C2 ⊆ Aut C3xC6180(C3xC6):3(C2xC10)360,160

Non-split extensions G=N.Q with N=C3xC6 and Q=C2xC10
extensionφ:Q→Aut NdρLabelID
(C3xC6).1(C2xC10) = C5xS3xDic3φ: C2xC10/C5C22 ⊆ Aut C3xC61204(C3xC6).1(C2xC10)360,72
(C3xC6).2(C2xC10) = C5xC6.D6φ: C2xC10/C5C22 ⊆ Aut C3xC6604(C3xC6).2(C2xC10)360,73
(C3xC6).3(C2xC10) = C5xD6:S3φ: C2xC10/C5C22 ⊆ Aut C3xC61204(C3xC6).3(C2xC10)360,74
(C3xC6).4(C2xC10) = C5xC3:D12φ: C2xC10/C5C22 ⊆ Aut C3xC6604(C3xC6).4(C2xC10)360,75
(C3xC6).5(C2xC10) = C5xC32:2Q8φ: C2xC10/C5C22 ⊆ Aut C3xC61204(C3xC6).5(C2xC10)360,76
(C3xC6).6(C2xC10) = C15xDic6φ: C2xC10/C10C2 ⊆ Aut C3xC61202(C3xC6).6(C2xC10)360,95
(C3xC6).7(C2xC10) = S3xC60φ: C2xC10/C10C2 ⊆ Aut C3xC61202(C3xC6).7(C2xC10)360,96
(C3xC6).8(C2xC10) = C15xD12φ: C2xC10/C10C2 ⊆ Aut C3xC61202(C3xC6).8(C2xC10)360,97
(C3xC6).9(C2xC10) = Dic3xC30φ: C2xC10/C10C2 ⊆ Aut C3xC6120(C3xC6).9(C2xC10)360,98
(C3xC6).10(C2xC10) = C15xC3:D4φ: C2xC10/C10C2 ⊆ Aut C3xC6602(C3xC6).10(C2xC10)360,99
(C3xC6).11(C2xC10) = C5xC32:4Q8φ: C2xC10/C10C2 ⊆ Aut C3xC6360(C3xC6).11(C2xC10)360,105
(C3xC6).12(C2xC10) = C3:S3xC20φ: C2xC10/C10C2 ⊆ Aut C3xC6180(C3xC6).12(C2xC10)360,106
(C3xC6).13(C2xC10) = C5xC12:S3φ: C2xC10/C10C2 ⊆ Aut C3xC6180(C3xC6).13(C2xC10)360,107
(C3xC6).14(C2xC10) = C10xC3:Dic3φ: C2xC10/C10C2 ⊆ Aut C3xC6360(C3xC6).14(C2xC10)360,108
(C3xC6).15(C2xC10) = C5xC32:7D4φ: C2xC10/C10C2 ⊆ Aut C3xC6180(C3xC6).15(C2xC10)360,109
(C3xC6).16(C2xC10) = D4xC3xC15central extension (φ=1)180(C3xC6).16(C2xC10)360,116
(C3xC6).17(C2xC10) = Q8xC3xC15central extension (φ=1)360(C3xC6).17(C2xC10)360,117

׿
x
:
Z
F
o
wr
Q
<