Copied to
clipboard

G = Dic3×C30order 360 = 23·32·5

Direct product of C30 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic3×C30, C6⋊C60, C305C12, C30.70D6, C62.1C10, C32(C2×C60), (C3×C6)⋊2C20, (C3×C30)⋊10C4, C2.2(S3×C30), (C2×C30).9C6, C6.4(C2×C30), (C6×C30).4C2, (C2×C6).3C30, C326(C2×C20), C22.(S3×C15), C1512(C2×C12), C10.16(S3×C6), C6.20(S3×C10), C30.27(C2×C6), (C2×C30).12S3, (C3×C30).50C22, (C3×C15)⋊34(C2×C4), (C2×C6).6(C5×S3), (C3×C6).9(C2×C10), (C2×C10).2(C3×S3), SmallGroup(360,98)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3×C30
C1C3C6C30C3×C30Dic3×C15 — Dic3×C30
C3 — Dic3×C30
C1C2×C30

Generators and relations for Dic3×C30
 G = < a,b,c | a30=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 108 in 74 conjugacy classes, 52 normal (28 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, C6, C6, C6, C2×C4, C32, C10, C10, Dic3, C12, C2×C6, C2×C6, C15, C15, C3×C6, C3×C6, C20, C2×C10, C2×Dic3, C2×C12, C30, C30, C30, C3×Dic3, C62, C2×C20, C3×C15, C5×Dic3, C60, C2×C30, C2×C30, C6×Dic3, C3×C30, C3×C30, C10×Dic3, C2×C60, Dic3×C15, C6×C30, Dic3×C30
Quotients: C1, C2, C3, C4, C22, C5, S3, C6, C2×C4, C10, Dic3, C12, D6, C2×C6, C15, C3×S3, C20, C2×C10, C2×Dic3, C2×C12, C5×S3, C30, C3×Dic3, S3×C6, C2×C20, C5×Dic3, C60, S3×C10, C2×C30, C6×Dic3, S3×C15, C10×Dic3, C2×C60, Dic3×C15, S3×C30, Dic3×C30

Smallest permutation representation of Dic3×C30
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 78 21 68 11 88)(2 79 22 69 12 89)(3 80 23 70 13 90)(4 81 24 71 14 61)(5 82 25 72 15 62)(6 83 26 73 16 63)(7 84 27 74 17 64)(8 85 28 75 18 65)(9 86 29 76 19 66)(10 87 30 77 20 67)(31 114 41 94 51 104)(32 115 42 95 52 105)(33 116 43 96 53 106)(34 117 44 97 54 107)(35 118 45 98 55 108)(36 119 46 99 56 109)(37 120 47 100 57 110)(38 91 48 101 58 111)(39 92 49 102 59 112)(40 93 50 103 60 113)
(1 112 68 49)(2 113 69 50)(3 114 70 51)(4 115 71 52)(5 116 72 53)(6 117 73 54)(7 118 74 55)(8 119 75 56)(9 120 76 57)(10 91 77 58)(11 92 78 59)(12 93 79 60)(13 94 80 31)(14 95 81 32)(15 96 82 33)(16 97 83 34)(17 98 84 35)(18 99 85 36)(19 100 86 37)(20 101 87 38)(21 102 88 39)(22 103 89 40)(23 104 90 41)(24 105 61 42)(25 106 62 43)(26 107 63 44)(27 108 64 45)(28 109 65 46)(29 110 66 47)(30 111 67 48)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,78,21,68,11,88)(2,79,22,69,12,89)(3,80,23,70,13,90)(4,81,24,71,14,61)(5,82,25,72,15,62)(6,83,26,73,16,63)(7,84,27,74,17,64)(8,85,28,75,18,65)(9,86,29,76,19,66)(10,87,30,77,20,67)(31,114,41,94,51,104)(32,115,42,95,52,105)(33,116,43,96,53,106)(34,117,44,97,54,107)(35,118,45,98,55,108)(36,119,46,99,56,109)(37,120,47,100,57,110)(38,91,48,101,58,111)(39,92,49,102,59,112)(40,93,50,103,60,113), (1,112,68,49)(2,113,69,50)(3,114,70,51)(4,115,71,52)(5,116,72,53)(6,117,73,54)(7,118,74,55)(8,119,75,56)(9,120,76,57)(10,91,77,58)(11,92,78,59)(12,93,79,60)(13,94,80,31)(14,95,81,32)(15,96,82,33)(16,97,83,34)(17,98,84,35)(18,99,85,36)(19,100,86,37)(20,101,87,38)(21,102,88,39)(22,103,89,40)(23,104,90,41)(24,105,61,42)(25,106,62,43)(26,107,63,44)(27,108,64,45)(28,109,65,46)(29,110,66,47)(30,111,67,48)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,78,21,68,11,88)(2,79,22,69,12,89)(3,80,23,70,13,90)(4,81,24,71,14,61)(5,82,25,72,15,62)(6,83,26,73,16,63)(7,84,27,74,17,64)(8,85,28,75,18,65)(9,86,29,76,19,66)(10,87,30,77,20,67)(31,114,41,94,51,104)(32,115,42,95,52,105)(33,116,43,96,53,106)(34,117,44,97,54,107)(35,118,45,98,55,108)(36,119,46,99,56,109)(37,120,47,100,57,110)(38,91,48,101,58,111)(39,92,49,102,59,112)(40,93,50,103,60,113), (1,112,68,49)(2,113,69,50)(3,114,70,51)(4,115,71,52)(5,116,72,53)(6,117,73,54)(7,118,74,55)(8,119,75,56)(9,120,76,57)(10,91,77,58)(11,92,78,59)(12,93,79,60)(13,94,80,31)(14,95,81,32)(15,96,82,33)(16,97,83,34)(17,98,84,35)(18,99,85,36)(19,100,86,37)(20,101,87,38)(21,102,88,39)(22,103,89,40)(23,104,90,41)(24,105,61,42)(25,106,62,43)(26,107,63,44)(27,108,64,45)(28,109,65,46)(29,110,66,47)(30,111,67,48) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,78,21,68,11,88),(2,79,22,69,12,89),(3,80,23,70,13,90),(4,81,24,71,14,61),(5,82,25,72,15,62),(6,83,26,73,16,63),(7,84,27,74,17,64),(8,85,28,75,18,65),(9,86,29,76,19,66),(10,87,30,77,20,67),(31,114,41,94,51,104),(32,115,42,95,52,105),(33,116,43,96,53,106),(34,117,44,97,54,107),(35,118,45,98,55,108),(36,119,46,99,56,109),(37,120,47,100,57,110),(38,91,48,101,58,111),(39,92,49,102,59,112),(40,93,50,103,60,113)], [(1,112,68,49),(2,113,69,50),(3,114,70,51),(4,115,71,52),(5,116,72,53),(6,117,73,54),(7,118,74,55),(8,119,75,56),(9,120,76,57),(10,91,77,58),(11,92,78,59),(12,93,79,60),(13,94,80,31),(14,95,81,32),(15,96,82,33),(16,97,83,34),(17,98,84,35),(18,99,85,36),(19,100,86,37),(20,101,87,38),(21,102,88,39),(22,103,89,40),(23,104,90,41),(24,105,61,42),(25,106,62,43),(26,107,63,44),(27,108,64,45),(28,109,65,46),(29,110,66,47),(30,111,67,48)]])

180 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D5A5B5C5D6A···6F6G···6O10A···10L12A···12H15A···15H15I···15T20A···20P30A···30X30Y···30BH60A···60AF
order122233333444455556···66···610···1012···1215···1515···1520···2030···3030···3060···60
size111111222333311111···12···21···13···31···12···23···31···12···23···3

180 irreducible representations

dim1111111111111111222222222222
type++++-+
imageC1C2C2C3C4C5C6C6C10C10C12C15C20C30C30C60S3Dic3D6C3×S3C5×S3C3×Dic3S3×C6C5×Dic3S3×C10S3×C15Dic3×C15S3×C30
kernelDic3×C30Dic3×C15C6×C30C10×Dic3C3×C30C6×Dic3C5×Dic3C2×C30C3×Dic3C62C30C2×Dic3C3×C6Dic3C2×C6C6C2×C30C30C30C2×C10C2×C6C10C10C6C6C22C2C2
# reps12124442848816168321212442848168

Matrix representation of Dic3×C30 in GL3(𝔽61) generated by

4800
0360
0036
,
100
0140
0048
,
6000
0060
010
G:=sub<GL(3,GF(61))| [48,0,0,0,36,0,0,0,36],[1,0,0,0,14,0,0,0,48],[60,0,0,0,0,1,0,60,0] >;

Dic3×C30 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_{30}
% in TeX

G:=Group("Dic3xC30");
// GroupNames label

G:=SmallGroup(360,98);
// by ID

G=gap.SmallGroup(360,98);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-3,360,8645]);
// Polycyclic

G:=Group<a,b,c|a^30=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽