Extensions 1→N→G→Q→1 with N=D5xC3xC6 and Q=C2

Direct product G=NxQ with N=D5xC3xC6 and Q=C2
dρLabelID
D5xC62180D5xC6^2360,157

Semidirect products G=N:Q with N=D5xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC3xC6):1C2 = C3xC15:D4φ: C2/C1C2 ⊆ Out D5xC3xC6604(D5xC3xC6):1C2360,61
(D5xC3xC6):2C2 = C3xC3:D20φ: C2/C1C2 ⊆ Out D5xC3xC6604(D5xC3xC6):2C2360,62
(D5xC3xC6):3C2 = C30.12D6φ: C2/C1C2 ⊆ Out D5xC3xC6180(D5xC3xC6):3C2360,68
(D5xC3xC6):4C2 = C32:7D20φ: C2/C1C2 ⊆ Out D5xC3xC6180(D5xC3xC6):4C2360,69
(D5xC3xC6):5C2 = S3xC6xD5φ: C2/C1C2 ⊆ Out D5xC3xC6604(D5xC3xC6):5C2360,151
(D5xC3xC6):6C2 = C2xD5xC3:S3φ: C2/C1C2 ⊆ Out D5xC3xC690(D5xC3xC6):6C2360,152
(D5xC3xC6):7C2 = C32xD20φ: C2/C1C2 ⊆ Out D5xC3xC6180(D5xC3xC6):7C2360,92
(D5xC3xC6):8C2 = C32xC5:D4φ: C2/C1C2 ⊆ Out D5xC3xC6180(D5xC3xC6):8C2360,94

Non-split extensions G=N.Q with N=D5xC3xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC3xC6).1C2 = C3xD5xDic3φ: C2/C1C2 ⊆ Out D5xC3xC6604(D5xC3xC6).1C2360,58
(D5xC3xC6).2C2 = D5xC3:Dic3φ: C2/C1C2 ⊆ Out D5xC3xC6180(D5xC3xC6).2C2360,65
(D5xC3xC6).3C2 = C2xC32:3F5φ: C2/C1C2 ⊆ Out D5xC3xC690(D5xC3xC6).3C2360,147
(D5xC3xC6).4C2 = C6xC3:F5φ: C2/C1C2 ⊆ Out D5xC3xC6604(D5xC3xC6).4C2360,146
(D5xC3xC6).5C2 = C3xC6xF5φ: C2/C1C2 ⊆ Out D5xC3xC690(D5xC3xC6).5C2360,145
(D5xC3xC6).6C2 = D5xC3xC12φ: trivial image180(D5xC3xC6).6C2360,91

׿
x
:
Z
F
o
wr
Q
<