Copied to
clipboard

G = C3×D5×Dic3order 360 = 23·32·5

Direct product of C3, D5 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×D5×Dic3, C30.28D6, Dic152C6, C33(D5×C12), C6.1(C6×D5), C52(C6×Dic3), C329(C4×D5), C154(C2×C12), (C3×D5)⋊1C12, C10.1(S3×C6), C30.1(C2×C6), (C6×D5).9S3, (C6×D5).1C6, C6.28(S3×D5), (C5×Dic3)⋊1C6, D10.2(C3×S3), C158(C2×Dic3), (C3×C6).13D10, (C32×D5)⋊3C4, (C3×Dic15)⋊2C2, (Dic3×C15)⋊6C2, (C3×C30).1C22, C2.1(C3×S3×D5), (D5×C3×C6).1C2, (C3×C15)⋊13(C2×C4), SmallGroup(360,58)

Series: Derived Chief Lower central Upper central

C1C15 — C3×D5×Dic3
C1C5C15C30C3×C30D5×C3×C6 — C3×D5×Dic3
C15 — C3×D5×Dic3
C1C6

Generators and relations for C3×D5×Dic3
 G = < a,b,c,d,e | a3=b5=c2=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 244 in 74 conjugacy classes, 36 normal (28 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, C6, C6, C2×C4, C32, D5, C10, Dic3, Dic3, C12, C2×C6, C15, C15, C3×C6, C3×C6, Dic5, C20, D10, C2×Dic3, C2×C12, C3×D5, C3×D5, C30, C30, C3×Dic3, C3×Dic3, C62, C4×D5, C3×C15, C5×Dic3, C3×Dic5, Dic15, C60, C6×D5, C6×D5, C6×Dic3, C32×D5, C3×C30, D5×Dic3, D5×C12, Dic3×C15, C3×Dic15, D5×C3×C6, C3×D5×Dic3
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D5, Dic3, C12, D6, C2×C6, C3×S3, D10, C2×Dic3, C2×C12, C3×D5, C3×Dic3, S3×C6, C4×D5, S3×D5, C6×D5, C6×Dic3, D5×Dic3, D5×C12, C3×S3×D5, C3×D5×Dic3

Smallest permutation representation of C3×D5×Dic3
On 60 points
Generators in S60
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)(49 51 53)(50 52 54)(55 59 57)(56 60 58)
(1 34 41 53 47)(2 35 42 54 48)(3 36 37 49 43)(4 31 38 50 44)(5 32 39 51 45)(6 33 40 52 46)(7 13 55 26 19)(8 14 56 27 20)(9 15 57 28 21)(10 16 58 29 22)(11 17 59 30 23)(12 18 60 25 24)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 43)(7 29)(8 30)(9 25)(10 26)(11 27)(12 28)(13 58)(14 59)(15 60)(16 55)(17 56)(18 57)(19 22)(20 23)(21 24)(31 53)(32 54)(33 49)(34 50)(35 51)(36 52)(37 40)(38 41)(39 42)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)
(1 59 4 56)(2 58 5 55)(3 57 6 60)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 42 22 39)(20 41 23 38)(21 40 24 37)(25 36 28 33)(26 35 29 32)(27 34 30 31)

G:=sub<Sym(60)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58), (1,34,41,53,47)(2,35,42,54,48)(3,36,37,49,43)(4,31,38,50,44)(5,32,39,51,45)(6,33,40,52,46)(7,13,55,26,19)(8,14,56,27,20)(9,15,57,28,21)(10,16,58,29,22)(11,17,59,30,23)(12,18,60,25,24), (1,44)(2,45)(3,46)(4,47)(5,48)(6,43)(7,29)(8,30)(9,25)(10,26)(11,27)(12,28)(13,58)(14,59)(15,60)(16,55)(17,56)(18,57)(19,22)(20,23)(21,24)(31,53)(32,54)(33,49)(34,50)(35,51)(36,52)(37,40)(38,41)(39,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58), (1,34,41,53,47)(2,35,42,54,48)(3,36,37,49,43)(4,31,38,50,44)(5,32,39,51,45)(6,33,40,52,46)(7,13,55,26,19)(8,14,56,27,20)(9,15,57,28,21)(10,16,58,29,22)(11,17,59,30,23)(12,18,60,25,24), (1,44)(2,45)(3,46)(4,47)(5,48)(6,43)(7,29)(8,30)(9,25)(10,26)(11,27)(12,28)(13,58)(14,59)(15,60)(16,55)(17,56)(18,57)(19,22)(20,23)(21,24)(31,53)(32,54)(33,49)(34,50)(35,51)(36,52)(37,40)(38,41)(39,42), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60), (1,59,4,56)(2,58,5,55)(3,57,6,60)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,42,22,39)(20,41,23,38)(21,40,24,37)(25,36,28,33)(26,35,29,32)(27,34,30,31) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48),(49,51,53),(50,52,54),(55,59,57),(56,60,58)], [(1,34,41,53,47),(2,35,42,54,48),(3,36,37,49,43),(4,31,38,50,44),(5,32,39,51,45),(6,33,40,52,46),(7,13,55,26,19),(8,14,56,27,20),(9,15,57,28,21),(10,16,58,29,22),(11,17,59,30,23),(12,18,60,25,24)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,43),(7,29),(8,30),(9,25),(10,26),(11,27),(12,28),(13,58),(14,59),(15,60),(16,55),(17,56),(18,57),(19,22),(20,23),(21,24),(31,53),(32,54),(33,49),(34,50),(35,51),(36,52),(37,40),(38,41),(39,42)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60)], [(1,59,4,56),(2,58,5,55),(3,57,6,60),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,42,22,39),(20,41,23,38),(21,40,24,37),(25,36,28,33),(26,35,29,32),(27,34,30,31)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D5A5B6A6B6C6D6E6F6G6H6I6J···6O10A10B12A12B12C12D12E12F12G12H15A15B15C15D15E···15J20A20B20C20D30A30B30C30D30E···30J60A···60H
order1222333334444556666666666···6101012121212121212121515151515···15202020203030303030···3060···60
size1155112223315152211222555510···102233331515151522224···4666622224···46···6

72 irreducible representations

dim11111111112222222222224444
type++++++-+++-
imageC1C2C2C2C3C4C6C6C6C12S3D5Dic3D6C3×S3D10C3×D5C3×Dic3S3×C6C4×D5C6×D5D5×C12S3×D5D5×Dic3C3×S3×D5C3×D5×Dic3
kernelC3×D5×Dic3Dic3×C15C3×Dic15D5×C3×C6D5×Dic3C32×D5C5×Dic3Dic15C6×D5C3×D5C6×D5C3×Dic3C3×D5C30D10C3×C6Dic3D5C10C32C6C3C6C3C2C1
# reps11112422281221224424482244

Matrix representation of C3×D5×Dic3 in GL4(𝔽61) generated by

1000
0100
00470
00047
,
60100
164400
0010
0001
,
1000
456000
0010
0001
,
60000
06000
001334
00047
,
11000
01100
0010
00160
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,47,0,0,0,0,47],[60,16,0,0,1,44,0,0,0,0,1,0,0,0,0,1],[1,45,0,0,0,60,0,0,0,0,1,0,0,0,0,1],[60,0,0,0,0,60,0,0,0,0,13,0,0,0,34,47],[11,0,0,0,0,11,0,0,0,0,1,1,0,0,0,60] >;

C3×D5×Dic3 in GAP, Magma, Sage, TeX

C_3\times D_5\times {\rm Dic}_3
% in TeX

G:=Group("C3xD5xDic3");
// GroupNames label

G:=SmallGroup(360,58);
// by ID

G=gap.SmallGroup(360,58);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,79,730,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽