direct product, metabelian, supersoluble, monomial
Aliases: C3×C15⋊D4, C30.31D6, Dic15⋊4C6, (C3×C15)⋊4D4, (C6×D5)⋊4S3, (S3×C6)⋊1D5, (C6×D5)⋊1C6, D6⋊1(C3×D5), C15⋊1(C3×D4), C6.4(C6×D5), (S3×C10)⋊1C6, (S3×C30)⋊1C2, D10⋊1(C3×S3), C10.4(S3×C6), C30.4(C2×C6), C6.31(S3×D5), (C3×C6).16D10, C32⋊7(C5⋊D4), C15⋊10(C3⋊D4), (C3×Dic15)⋊4C2, (C3×C30).4C22, (D5×C3×C6)⋊1C2, C5⋊2(C3×C3⋊D4), C2.4(C3×S3×D5), C3⋊2(C3×C5⋊D4), SmallGroup(360,61)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C15⋊D4
G = < a,b,c,d | a3=b15=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd=b4, dcd=c-1 >
Subgroups: 276 in 74 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×C6, C3×C6, Dic5, D10, C2×C10, C3⋊D4, C3×D4, C5×S3, C3×D5, C30, C30, C3×Dic3, S3×C6, C62, C5⋊D4, C3×C15, C3×Dic5, Dic15, C6×D5, C6×D5, S3×C10, C2×C30, C3×C3⋊D4, C32×D5, S3×C15, C3×C30, C15⋊D4, C3×C5⋊D4, C3×Dic15, D5×C3×C6, S3×C30, C3×C15⋊D4
Quotients: C1, C2, C3, C22, S3, C6, D4, D5, D6, C2×C6, C3×S3, D10, C3⋊D4, C3×D4, C3×D5, S3×C6, C5⋊D4, S3×D5, C6×D5, C3×C3⋊D4, C15⋊D4, C3×C5⋊D4, C3×S3×D5, C3×C15⋊D4
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 38 16 55)(2 37 17 54)(3 36 18 53)(4 35 19 52)(5 34 20 51)(6 33 21 50)(7 32 22 49)(8 31 23 48)(9 45 24 47)(10 44 25 46)(11 43 26 60)(12 42 27 59)(13 41 28 58)(14 40 29 57)(15 39 30 56)
(2 5)(3 9)(4 13)(7 10)(8 14)(12 15)(17 20)(18 24)(19 28)(22 25)(23 29)(27 30)(31 57)(32 46)(33 50)(34 54)(35 58)(36 47)(37 51)(38 55)(39 59)(40 48)(41 52)(42 56)(43 60)(44 49)(45 53)
G:=sub<Sym(60)| (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,38,16,55)(2,37,17,54)(3,36,18,53)(4,35,19,52)(5,34,20,51)(6,33,21,50)(7,32,22,49)(8,31,23,48)(9,45,24,47)(10,44,25,46)(11,43,26,60)(12,42,27,59)(13,41,28,58)(14,40,29,57)(15,39,30,56), (2,5)(3,9)(4,13)(7,10)(8,14)(12,15)(17,20)(18,24)(19,28)(22,25)(23,29)(27,30)(31,57)(32,46)(33,50)(34,54)(35,58)(36,47)(37,51)(38,55)(39,59)(40,48)(41,52)(42,56)(43,60)(44,49)(45,53)>;
G:=Group( (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,38,16,55)(2,37,17,54)(3,36,18,53)(4,35,19,52)(5,34,20,51)(6,33,21,50)(7,32,22,49)(8,31,23,48)(9,45,24,47)(10,44,25,46)(11,43,26,60)(12,42,27,59)(13,41,28,58)(14,40,29,57)(15,39,30,56), (2,5)(3,9)(4,13)(7,10)(8,14)(12,15)(17,20)(18,24)(19,28)(22,25)(23,29)(27,30)(31,57)(32,46)(33,50)(34,54)(35,58)(36,47)(37,51)(38,55)(39,59)(40,48)(41,52)(42,56)(43,60)(44,49)(45,53) );
G=PermutationGroup([[(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,38,16,55),(2,37,17,54),(3,36,18,53),(4,35,19,52),(5,34,20,51),(6,33,21,50),(7,32,22,49),(8,31,23,48),(9,45,24,47),(10,44,25,46),(11,43,26,60),(12,42,27,59),(13,41,28,58),(14,40,29,57),(15,39,30,56)], [(2,5),(3,9),(4,13),(7,10),(8,14),(12,15),(17,20),(18,24),(19,28),(22,25),(23,29),(27,30),(31,57),(32,46),(33,50),(34,54),(35,58),(36,47),(37,51),(38,55),(39,59),(40,48),(41,52),(42,56),(43,60),(44,49),(45,53)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4 | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | ··· | 6O | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 15C | 15D | 15E | ··· | 15J | 30A | 30B | 30C | 30D | 30E | ··· | 30J | 30K | ··· | 30R |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 30 | 30 | 30 | 30 | 30 | ··· | 30 | 30 | ··· | 30 |
size | 1 | 1 | 6 | 10 | 1 | 1 | 2 | 2 | 2 | 30 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 10 | ··· | 10 | 2 | 2 | 6 | 6 | 6 | 6 | 30 | 30 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D5 | D6 | C3×S3 | D10 | C3⋊D4 | C3×D4 | C3×D5 | S3×C6 | C5⋊D4 | C6×D5 | C3×C3⋊D4 | C3×C5⋊D4 | S3×D5 | C15⋊D4 | C3×S3×D5 | C3×C15⋊D4 |
kernel | C3×C15⋊D4 | C3×Dic15 | D5×C3×C6 | S3×C30 | C15⋊D4 | Dic15 | C6×D5 | S3×C10 | C6×D5 | C3×C15 | S3×C6 | C30 | D10 | C3×C6 | C15 | C15 | D6 | C10 | C32 | C6 | C5 | C3 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 2 | 2 | 4 | 4 |
Matrix representation of C3×C15⋊D4 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 47 | 0 |
0 | 0 | 0 | 47 |
44 | 44 | 0 | 0 |
17 | 60 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 20 | 47 |
14 | 45 | 0 | 0 |
39 | 47 | 0 | 0 |
0 | 0 | 60 | 41 |
0 | 0 | 55 | 1 |
1 | 0 | 0 | 0 |
17 | 60 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 6 | 60 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,47,0,0,0,0,47],[44,17,0,0,44,60,0,0,0,0,13,20,0,0,0,47],[14,39,0,0,45,47,0,0,0,0,60,55,0,0,41,1],[1,17,0,0,0,60,0,0,0,0,1,6,0,0,0,60] >;
C3×C15⋊D4 in GAP, Magma, Sage, TeX
C_3\times C_{15}\rtimes D_4
% in TeX
G:=Group("C3xC15:D4");
// GroupNames label
G:=SmallGroup(360,61);
// by ID
G=gap.SmallGroup(360,61);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-5,169,730,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^15=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=b^4,d*c*d=c^-1>;
// generators/relations