direct product, metabelian, supersoluble, monomial
Aliases: C3×C3⋊D20, D30⋊3C6, C32⋊6D20, C30.32D6, (C3×C15)⋊5D4, (C6×D5)⋊5S3, (C6×D5)⋊2C6, C15⋊2(C3×D4), C3⋊2(C3×D20), Dic3⋊(C3×D5), C6.5(C6×D5), (C6×D15)⋊3C2, D10⋊2(C3×S3), C10.5(S3×C6), C30.5(C2×C6), C6.32(S3×D5), C15⋊8(C3⋊D4), (C5×Dic3)⋊3C6, (C3×Dic3)⋊4D5, (C3×C6).17D10, (Dic3×C15)⋊4C2, (C3×C30).5C22, (D5×C3×C6)⋊2C2, C5⋊1(C3×C3⋊D4), C2.5(C3×S3×D5), SmallGroup(360,62)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C3⋊D20
G = < a,b,c,d | a3=b3=c20=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 340 in 74 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×C6, C3×C6, C20, D10, D10, C3⋊D4, C3×D4, C3×D5, D15, C30, C30, C3×Dic3, S3×C6, C62, D20, C3×C15, C5×Dic3, C60, C6×D5, C6×D5, D30, C3×C3⋊D4, C32×D5, C3×D15, C3×C30, C3⋊D20, C3×D20, Dic3×C15, D5×C3×C6, C6×D15, C3×C3⋊D20
Quotients: C1, C2, C3, C22, S3, C6, D4, D5, D6, C2×C6, C3×S3, D10, C3⋊D4, C3×D4, C3×D5, S3×C6, D20, S3×D5, C6×D5, C3×C3⋊D4, C3⋊D20, C3×D20, C3×S3×D5, C3×C3⋊D20
(1 45 29)(2 46 30)(3 47 31)(4 48 32)(5 49 33)(6 50 34)(7 51 35)(8 52 36)(9 53 37)(10 54 38)(11 55 39)(12 56 40)(13 57 21)(14 58 22)(15 59 23)(16 60 24)(17 41 25)(18 42 26)(19 43 27)(20 44 28)
(1 45 29)(2 30 46)(3 47 31)(4 32 48)(5 49 33)(6 34 50)(7 51 35)(8 36 52)(9 53 37)(10 38 54)(11 55 39)(12 40 56)(13 57 21)(14 22 58)(15 59 23)(16 24 60)(17 41 25)(18 26 42)(19 43 27)(20 28 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 60)(50 59)(51 58)(52 57)(53 56)(54 55)
G:=sub<Sym(60)| (1,45,29)(2,46,30)(3,47,31)(4,48,32)(5,49,33)(6,50,34)(7,51,35)(8,52,36)(9,53,37)(10,54,38)(11,55,39)(12,56,40)(13,57,21)(14,58,22)(15,59,23)(16,60,24)(17,41,25)(18,42,26)(19,43,27)(20,44,28), (1,45,29)(2,30,46)(3,47,31)(4,32,48)(5,49,33)(6,34,50)(7,51,35)(8,36,52)(9,53,37)(10,38,54)(11,55,39)(12,40,56)(13,57,21)(14,22,58)(15,59,23)(16,24,60)(17,41,25)(18,26,42)(19,43,27)(20,28,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)>;
G:=Group( (1,45,29)(2,46,30)(3,47,31)(4,48,32)(5,49,33)(6,50,34)(7,51,35)(8,52,36)(9,53,37)(10,54,38)(11,55,39)(12,56,40)(13,57,21)(14,58,22)(15,59,23)(16,60,24)(17,41,25)(18,42,26)(19,43,27)(20,44,28), (1,45,29)(2,30,46)(3,47,31)(4,32,48)(5,49,33)(6,34,50)(7,51,35)(8,36,52)(9,53,37)(10,38,54)(11,55,39)(12,40,56)(13,57,21)(14,22,58)(15,59,23)(16,24,60)(17,41,25)(18,26,42)(19,43,27)(20,28,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55) );
G=PermutationGroup([[(1,45,29),(2,46,30),(3,47,31),(4,48,32),(5,49,33),(6,50,34),(7,51,35),(8,52,36),(9,53,37),(10,54,38),(11,55,39),(12,56,40),(13,57,21),(14,58,22),(15,59,23),(16,60,24),(17,41,25),(18,42,26),(19,43,27),(20,44,28)], [(1,45,29),(2,30,46),(3,47,31),(4,32,48),(5,49,33),(6,34,50),(7,51,35),(8,36,52),(9,53,37),(10,38,54),(11,55,39),(12,40,56),(13,57,21),(14,22,58),(15,59,23),(16,24,60),(17,41,25),(18,26,42),(19,43,27),(20,28,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,60),(50,59),(51,58),(52,57),(53,56),(54,55)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4 | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | ··· | 6M | 6N | 6O | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 15E | ··· | 15J | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 30E | ··· | 30J | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 10 | 30 | 1 | 1 | 2 | 2 | 2 | 6 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 10 | ··· | 10 | 30 | 30 | 2 | 2 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D5 | D6 | C3×S3 | D10 | C3⋊D4 | C3×D4 | C3×D5 | S3×C6 | D20 | C6×D5 | C3×C3⋊D4 | C3×D20 | S3×D5 | C3⋊D20 | C3×S3×D5 | C3×C3⋊D20 |
kernel | C3×C3⋊D20 | Dic3×C15 | D5×C3×C6 | C6×D15 | C3⋊D20 | C5×Dic3 | C6×D5 | D30 | C6×D5 | C3×C15 | C3×Dic3 | C30 | D10 | C3×C6 | C15 | C15 | Dic3 | C10 | C32 | C6 | C5 | C3 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 4 | 8 | 2 | 2 | 4 | 4 |
Matrix representation of C3×C3⋊D20 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 47 |
0 | 60 | 0 | 0 |
1 | 17 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 60 | 0 |
44 | 60 | 0 | 0 |
44 | 17 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,13],[1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,47],[0,1,0,0,60,17,0,0,0,0,0,60,0,0,1,0],[44,44,0,0,60,17,0,0,0,0,0,1,0,0,1,0] >;
C3×C3⋊D20 in GAP, Magma, Sage, TeX
C_3\times C_3\rtimes D_{20}
% in TeX
G:=Group("C3xC3:D20");
// GroupNames label
G:=SmallGroup(360,62);
// by ID
G=gap.SmallGroup(360,62);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-5,169,79,730,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations