Extensions 1→N→G→Q→1 with N=S3xC30 and Q=C2

Direct product G=NxQ with N=S3xC30 and Q=C2
dρLabelID
S3xC2xC30120S3xC2xC30360,158

Semidirect products G=N:Q with N=S3xC30 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC30):1C2 = C3xC15:D4φ: C2/C1C2 ⊆ Out S3xC30604(S3xC30):1C2360,61
(S3xC30):2C2 = C3xC5:D12φ: C2/C1C2 ⊆ Out S3xC301204(S3xC30):2C2360,63
(S3xC30):3C2 = D6:D15φ: C2/C1C2 ⊆ Out S3xC301204-(S3xC30):3C2360,80
(S3xC30):4C2 = D6:2D15φ: C2/C1C2 ⊆ Out S3xC30604+(S3xC30):4C2360,82
(S3xC30):5C2 = S3xC6xD5φ: C2/C1C2 ⊆ Out S3xC30604(S3xC30):5C2360,151
(S3xC30):6C2 = C2xS3xD15φ: C2/C1C2 ⊆ Out S3xC30604+(S3xC30):6C2360,154
(S3xC30):7C2 = C5xD6:S3φ: C2/C1C2 ⊆ Out S3xC301204(S3xC30):7C2360,74
(S3xC30):8C2 = C5xC3:D12φ: C2/C1C2 ⊆ Out S3xC30604(S3xC30):8C2360,75
(S3xC30):9C2 = C15xD12φ: C2/C1C2 ⊆ Out S3xC301202(S3xC30):9C2360,97
(S3xC30):10C2 = C15xC3:D4φ: C2/C1C2 ⊆ Out S3xC30602(S3xC30):10C2360,99
(S3xC30):11C2 = S32xC10φ: C2/C1C2 ⊆ Out S3xC30604(S3xC30):11C2360,153

Non-split extensions G=N.Q with N=S3xC30 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC30).1C2 = C3xS3xDic5φ: C2/C1C2 ⊆ Out S3xC301204(S3xC30).1C2360,59
(S3xC30).2C2 = S3xDic15φ: C2/C1C2 ⊆ Out S3xC301204-(S3xC30).2C2360,78
(S3xC30).3C2 = C5xS3xDic3φ: C2/C1C2 ⊆ Out S3xC301204(S3xC30).3C2360,72
(S3xC30).4C2 = S3xC60φ: trivial image1202(S3xC30).4C2360,96

׿
x
:
Z
F
o
wr
Q
<