# Extensions 1→N→G→Q→1 with N=S3×C30 and Q=C2

Direct product G=N×Q with N=S3×C30 and Q=C2
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=S3×C30 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C30)⋊1C2 = C3×C15⋊D4φ: C2/C1C2 ⊆ Out S3×C30604(S3xC30):1C2360,61
(S3×C30)⋊2C2 = C3×C5⋊D12φ: C2/C1C2 ⊆ Out S3×C301204(S3xC30):2C2360,63
(S3×C30)⋊3C2 = D6⋊D15φ: C2/C1C2 ⊆ Out S3×C301204-(S3xC30):3C2360,80
(S3×C30)⋊4C2 = D62D15φ: C2/C1C2 ⊆ Out S3×C30604+(S3xC30):4C2360,82
(S3×C30)⋊5C2 = S3×C6×D5φ: C2/C1C2 ⊆ Out S3×C30604(S3xC30):5C2360,151
(S3×C30)⋊6C2 = C2×S3×D15φ: C2/C1C2 ⊆ Out S3×C30604+(S3xC30):6C2360,154
(S3×C30)⋊7C2 = C5×D6⋊S3φ: C2/C1C2 ⊆ Out S3×C301204(S3xC30):7C2360,74
(S3×C30)⋊8C2 = C5×C3⋊D12φ: C2/C1C2 ⊆ Out S3×C30604(S3xC30):8C2360,75
(S3×C30)⋊9C2 = C15×D12φ: C2/C1C2 ⊆ Out S3×C301202(S3xC30):9C2360,97
(S3×C30)⋊10C2 = C15×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C30602(S3xC30):10C2360,99
(S3×C30)⋊11C2 = S32×C10φ: C2/C1C2 ⊆ Out S3×C30604(S3xC30):11C2360,153

Non-split extensions G=N.Q with N=S3×C30 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C30).1C2 = C3×S3×Dic5φ: C2/C1C2 ⊆ Out S3×C301204(S3xC30).1C2360,59
(S3×C30).2C2 = S3×Dic15φ: C2/C1C2 ⊆ Out S3×C301204-(S3xC30).2C2360,78
(S3×C30).3C2 = C5×S3×Dic3φ: C2/C1C2 ⊆ Out S3×C301204(S3xC30).3C2360,72
(S3×C30).4C2 = S3×C60φ: trivial image1202(S3xC30).4C2360,96

׿
×
𝔽