Copied to
clipboard

G = C3×C5⋊D12order 360 = 23·32·5

Direct product of C3 and C5⋊D12

direct product, metabelian, supersoluble, monomial

Aliases: C3×C5⋊D12, D304C6, C158D12, C30.33D6, (C3×C15)⋊6D4, C52(C3×D12), (S3×C6)⋊2D5, D62(C3×D5), C153(C3×D4), Dic5⋊(C3×S3), C6.6(C6×D5), (S3×C10)⋊2C6, (S3×C30)⋊2C2, (C6×D15)⋊4C2, C10.6(S3×C6), C30.6(C2×C6), C6.33(S3×D5), (C3×Dic5)⋊3C6, (C3×Dic5)⋊4S3, (C3×C6).18D10, C325(C5⋊D4), (C3×C30).6C22, (C32×Dic5)⋊3C2, C2.6(C3×S3×D5), C31(C3×C5⋊D4), SmallGroup(360,63)

Series: Derived Chief Lower central Upper central

C1C30 — C3×C5⋊D12
C1C5C15C30C3×C30C32×Dic5 — C3×C5⋊D12
C15C30 — C3×C5⋊D12
C1C6

Generators and relations for C3×C5⋊D12
 G = < a,b,c,d | a3=b5=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 300 in 70 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, C10, C12, D6, D6, C2×C6, C15, C15, C3×S3, C3×C6, Dic5, D10, C2×C10, D12, C3×D4, C5×S3, C3×D5, D15, C30, C30, C3×C12, S3×C6, S3×C6, C5⋊D4, C3×C15, C3×Dic5, C3×Dic5, C6×D5, S3×C10, D30, C2×C30, C3×D12, S3×C15, C3×D15, C3×C30, C5⋊D12, C3×C5⋊D4, C32×Dic5, S3×C30, C6×D15, C3×C5⋊D12
Quotients: C1, C2, C3, C22, S3, C6, D4, D5, D6, C2×C6, C3×S3, D10, D12, C3×D4, C3×D5, S3×C6, C5⋊D4, S3×D5, C6×D5, C3×D12, C5⋊D12, C3×C5⋊D4, C3×S3×D5, C3×C5⋊D12

Smallest permutation representation of C3×C5⋊D12
On 120 points
Generators in S120
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 65 69)(62 66 70)(63 67 71)(64 68 72)(73 77 81)(74 78 82)(75 79 83)(76 80 84)(85 89 93)(86 90 94)(87 91 95)(88 92 96)(97 105 101)(98 106 102)(99 107 103)(100 108 104)(109 117 113)(110 118 114)(111 119 115)(112 120 116)
(1 19 26 110 98)(2 99 111 27 20)(3 21 28 112 100)(4 101 113 29 22)(5 23 30 114 102)(6 103 115 31 24)(7 13 32 116 104)(8 105 117 33 14)(9 15 34 118 106)(10 107 119 35 16)(11 17 36 120 108)(12 97 109 25 18)(37 49 73 89 69)(38 70 90 74 50)(39 51 75 91 71)(40 72 92 76 52)(41 53 77 93 61)(42 62 94 78 54)(43 55 79 95 63)(44 64 96 80 56)(45 57 81 85 65)(46 66 86 82 58)(47 59 83 87 67)(48 68 88 84 60)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 49)(2 60)(3 59)(4 58)(5 57)(6 56)(7 55)(8 54)(9 53)(10 52)(11 51)(12 50)(13 43)(14 42)(15 41)(16 40)(17 39)(18 38)(19 37)(20 48)(21 47)(22 46)(23 45)(24 44)(25 70)(26 69)(27 68)(28 67)(29 66)(30 65)(31 64)(32 63)(33 62)(34 61)(35 72)(36 71)(73 98)(74 97)(75 108)(76 107)(77 106)(78 105)(79 104)(80 103)(81 102)(82 101)(83 100)(84 99)(85 114)(86 113)(87 112)(88 111)(89 110)(90 109)(91 120)(92 119)(93 118)(94 117)(95 116)(96 115)

G:=sub<Sym(120)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,117,113)(110,118,114)(111,119,115)(112,120,116), (1,19,26,110,98)(2,99,111,27,20)(3,21,28,112,100)(4,101,113,29,22)(5,23,30,114,102)(6,103,115,31,24)(7,13,32,116,104)(8,105,117,33,14)(9,15,34,118,106)(10,107,119,35,16)(11,17,36,120,108)(12,97,109,25,18)(37,49,73,89,69)(38,70,90,74,50)(39,51,75,91,71)(40,72,92,76,52)(41,53,77,93,61)(42,62,94,78,54)(43,55,79,95,63)(44,64,96,80,56)(45,57,81,85,65)(46,66,86,82,58)(47,59,83,87,67)(48,68,88,84,60), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,49)(2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,72)(36,71)(73,98)(74,97)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,65,69)(62,66,70)(63,67,71)(64,68,72)(73,77,81)(74,78,82)(75,79,83)(76,80,84)(85,89,93)(86,90,94)(87,91,95)(88,92,96)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,117,113)(110,118,114)(111,119,115)(112,120,116), (1,19,26,110,98)(2,99,111,27,20)(3,21,28,112,100)(4,101,113,29,22)(5,23,30,114,102)(6,103,115,31,24)(7,13,32,116,104)(8,105,117,33,14)(9,15,34,118,106)(10,107,119,35,16)(11,17,36,120,108)(12,97,109,25,18)(37,49,73,89,69)(38,70,90,74,50)(39,51,75,91,71)(40,72,92,76,52)(41,53,77,93,61)(42,62,94,78,54)(43,55,79,95,63)(44,64,96,80,56)(45,57,81,85,65)(46,66,86,82,58)(47,59,83,87,67)(48,68,88,84,60), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,49)(2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,43)(14,42)(15,41)(16,40)(17,39)(18,38)(19,37)(20,48)(21,47)(22,46)(23,45)(24,44)(25,70)(26,69)(27,68)(28,67)(29,66)(30,65)(31,64)(32,63)(33,62)(34,61)(35,72)(36,71)(73,98)(74,97)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(91,120)(92,119)(93,118)(94,117)(95,116)(96,115) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,65,69),(62,66,70),(63,67,71),(64,68,72),(73,77,81),(74,78,82),(75,79,83),(76,80,84),(85,89,93),(86,90,94),(87,91,95),(88,92,96),(97,105,101),(98,106,102),(99,107,103),(100,108,104),(109,117,113),(110,118,114),(111,119,115),(112,120,116)], [(1,19,26,110,98),(2,99,111,27,20),(3,21,28,112,100),(4,101,113,29,22),(5,23,30,114,102),(6,103,115,31,24),(7,13,32,116,104),(8,105,117,33,14),(9,15,34,118,106),(10,107,119,35,16),(11,17,36,120,108),(12,97,109,25,18),(37,49,73,89,69),(38,70,90,74,50),(39,51,75,91,71),(40,72,92,76,52),(41,53,77,93,61),(42,62,94,78,54),(43,55,79,95,63),(44,64,96,80,56),(45,57,81,85,65),(46,66,86,82,58),(47,59,83,87,67),(48,68,88,84,60)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,49),(2,60),(3,59),(4,58),(5,57),(6,56),(7,55),(8,54),(9,53),(10,52),(11,51),(12,50),(13,43),(14,42),(15,41),(16,40),(17,39),(18,38),(19,37),(20,48),(21,47),(22,46),(23,45),(24,44),(25,70),(26,69),(27,68),(28,67),(29,66),(30,65),(31,64),(32,63),(33,62),(34,61),(35,72),(36,71),(73,98),(74,97),(75,108),(76,107),(77,106),(78,105),(79,104),(80,103),(81,102),(82,101),(83,100),(84,99),(85,114),(86,113),(87,112),(88,111),(89,110),(90,109),(91,120),(92,119),(93,118),(94,117),(95,116),(96,115)]])

63 conjugacy classes

class 1 2A2B2C3A3B3C3D3E 4 5A5B6A6B6C6D6E6F6G6H6I10A10B10C10D10E10F12A···12H15A15B15C15D15E···15J30A30B30C30D30E···30J30K···30R
order12223333345566666666610101010101012···121515151515···153030303030···3030···30
size116301122210221122266303022666610···1022224···422224···46···6

63 irreducible representations

dim11111111222222222222224444
type++++++++++++
imageC1C2C2C2C3C6C6C6S3D4D5D6C3×S3D10D12C3×D4C3×D5S3×C6C5⋊D4C6×D5C3×D12C3×C5⋊D4S3×D5C5⋊D12C3×S3×D5C3×C5⋊D12
kernelC3×C5⋊D12C32×Dic5S3×C30C6×D15C5⋊D12C3×Dic5S3×C10D30C3×Dic5C3×C15S3×C6C30Dic5C3×C6C15C15D6C10C32C6C5C3C6C3C2C1
# reps11112222112122224244482244

Matrix representation of C3×C5⋊D12 in GL4(𝔽61) generated by

13000
01300
0010
0001
,
1000
0100
001760
0010
,
32000
02100
00259
003259
,
02100
32000
00259
003259
G:=sub<GL(4,GF(61))| [13,0,0,0,0,13,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,17,1,0,0,60,0],[32,0,0,0,0,21,0,0,0,0,2,32,0,0,59,59],[0,32,0,0,21,0,0,0,0,0,2,32,0,0,59,59] >;

C3×C5⋊D12 in GAP, Magma, Sage, TeX

C_3\times C_5\rtimes D_{12}
% in TeX

G:=Group("C3xC5:D12");
// GroupNames label

G:=SmallGroup(360,63);
// by ID

G=gap.SmallGroup(360,63);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,169,730,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^5=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽