Copied to
clipboard

G = D6⋊D15order 360 = 23·32·5

1st semidirect product of D6 and D15 acting via D15/C15=C2

metabelian, supersoluble, monomial

Aliases: D301S3, D61D15, C6.4D30, C30.24D6, C10.4S32, (S3×C6)⋊3D5, (C3×C15)⋊10D4, C6.4(S3×D5), (S3×C30)⋊3C2, (S3×C10)⋊1S3, (C6×D15)⋊5C2, C2.4(S3×D15), (C3×C6).4D10, C52(D6⋊S3), C32(C157D4), C153(C3⋊D4), C33(C15⋊D4), C3⋊Dic157C2, C322(C5⋊D4), (C3×C30).18C22, SmallGroup(360,80)

Series: Derived Chief Lower central Upper central

C1C3×C30 — D6⋊D15
C1C5C15C3×C15C3×C30C6×D15 — D6⋊D15
C3×C15C3×C30 — D6⋊D15
C1C2

Generators and relations for D6⋊D15
 G = < a,b,c,d | a6=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 444 in 70 conjugacy classes, 24 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, D5, C10, C10, Dic3, D6, D6, C2×C6, C15, C15, C3×S3, C3×C6, Dic5, D10, C2×C10, C3⋊D4, C5×S3, C3×D5, D15, C30, C30, C3⋊Dic3, S3×C6, S3×C6, C5⋊D4, C3×C15, Dic15, C6×D5, S3×C10, D30, C2×C30, D6⋊S3, S3×C15, C3×D15, C3×C30, C15⋊D4, C157D4, C3⋊Dic15, S3×C30, C6×D15, D6⋊D15
Quotients: C1, C2, C22, S3, D4, D5, D6, D10, C3⋊D4, D15, S32, C5⋊D4, S3×D5, D30, D6⋊S3, C15⋊D4, C157D4, S3×D15, D6⋊D15

Smallest permutation representation of D6⋊D15
On 120 points
Generators in S120
(1 23 6 28 11 18)(2 24 7 29 12 19)(3 25 8 30 13 20)(4 26 9 16 14 21)(5 27 10 17 15 22)(31 58 41 53 36 48)(32 59 42 54 37 49)(33 60 43 55 38 50)(34 46 44 56 39 51)(35 47 45 57 40 52)(61 89 71 84 66 79)(62 90 72 85 67 80)(63 76 73 86 68 81)(64 77 74 87 69 82)(65 78 75 88 70 83)(91 115 96 120 101 110)(92 116 97 106 102 111)(93 117 98 107 103 112)(94 118 99 108 104 113)(95 119 100 109 105 114)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(61 101)(62 102)(63 103)(64 104)(65 105)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 107)(77 108)(78 109)(79 110)(80 111)(81 112)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 71)(2 70)(3 69)(4 68)(5 67)(6 66)(7 65)(8 64)(9 63)(10 62)(11 61)(12 75)(13 74)(14 73)(15 72)(16 76)(17 90)(18 89)(19 88)(20 87)(21 86)(22 85)(23 84)(24 83)(25 82)(26 81)(27 80)(28 79)(29 78)(30 77)(31 99)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 105)(41 104)(42 103)(43 102)(44 101)(45 100)(46 120)(47 119)(48 118)(49 117)(50 116)(51 115)(52 114)(53 113)(54 112)(55 111)(56 110)(57 109)(58 108)(59 107)(60 106)

G:=sub<Sym(120)| (1,23,6,28,11,18)(2,24,7,29,12,19)(3,25,8,30,13,20)(4,26,9,16,14,21)(5,27,10,17,15,22)(31,58,41,53,36,48)(32,59,42,54,37,49)(33,60,43,55,38,50)(34,46,44,56,39,51)(35,47,45,57,40,52)(61,89,71,84,66,79)(62,90,72,85,67,80)(63,76,73,86,68,81)(64,77,74,87,69,82)(65,78,75,88,70,83)(91,115,96,120,101,110)(92,116,97,106,102,111)(93,117,98,107,103,112)(94,118,99,108,104,113)(95,119,100,109,105,114), (1,56)(2,57)(3,58)(4,59)(5,60)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,107)(77,108)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,75)(13,74)(14,73)(15,72)(16,76)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106)>;

G:=Group( (1,23,6,28,11,18)(2,24,7,29,12,19)(3,25,8,30,13,20)(4,26,9,16,14,21)(5,27,10,17,15,22)(31,58,41,53,36,48)(32,59,42,54,37,49)(33,60,43,55,38,50)(34,46,44,56,39,51)(35,47,45,57,40,52)(61,89,71,84,66,79)(62,90,72,85,67,80)(63,76,73,86,68,81)(64,77,74,87,69,82)(65,78,75,88,70,83)(91,115,96,120,101,110)(92,116,97,106,102,111)(93,117,98,107,103,112)(94,118,99,108,104,113)(95,119,100,109,105,114), (1,56)(2,57)(3,58)(4,59)(5,60)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,107)(77,108)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,71)(2,70)(3,69)(4,68)(5,67)(6,66)(7,65)(8,64)(9,63)(10,62)(11,61)(12,75)(13,74)(14,73)(15,72)(16,76)(17,90)(18,89)(19,88)(20,87)(21,86)(22,85)(23,84)(24,83)(25,82)(26,81)(27,80)(28,79)(29,78)(30,77)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,105)(41,104)(42,103)(43,102)(44,101)(45,100)(46,120)(47,119)(48,118)(49,117)(50,116)(51,115)(52,114)(53,113)(54,112)(55,111)(56,110)(57,109)(58,108)(59,107)(60,106) );

G=PermutationGroup([[(1,23,6,28,11,18),(2,24,7,29,12,19),(3,25,8,30,13,20),(4,26,9,16,14,21),(5,27,10,17,15,22),(31,58,41,53,36,48),(32,59,42,54,37,49),(33,60,43,55,38,50),(34,46,44,56,39,51),(35,47,45,57,40,52),(61,89,71,84,66,79),(62,90,72,85,67,80),(63,76,73,86,68,81),(64,77,74,87,69,82),(65,78,75,88,70,83),(91,115,96,120,101,110),(92,116,97,106,102,111),(93,117,98,107,103,112),(94,118,99,108,104,113),(95,119,100,109,105,114)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(61,101),(62,102),(63,103),(64,104),(65,105),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,107),(77,108),(78,109),(79,110),(80,111),(81,112),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,71),(2,70),(3,69),(4,68),(5,67),(6,66),(7,65),(8,64),(9,63),(10,62),(11,61),(12,75),(13,74),(14,73),(15,72),(16,76),(17,90),(18,89),(19,88),(20,87),(21,86),(22,85),(23,84),(24,83),(25,82),(26,81),(27,80),(28,79),(29,78),(30,77),(31,99),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,105),(41,104),(42,103),(43,102),(44,101),(45,100),(46,120),(47,119),(48,118),(49,117),(50,116),(51,115),(52,114),(53,113),(54,112),(55,111),(56,110),(57,109),(58,108),(59,107),(60,106)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C 4 5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F15A15B15C15D15E···15J30A30B30C30D30E···30J30K···30R
order122233345566666661010101010101515151515···153030303030···3030···30
size11630224902222466303022666622224···422224···46···6

51 irreducible representations

dim111122222222222444444
type++++++++++++++--+-
imageC1C2C2C2S3S3D4D5D6D10C3⋊D4D15C5⋊D4D30C157D4S32S3×D5D6⋊S3C15⋊D4S3×D15D6⋊D15
kernelD6⋊D15C3⋊Dic15S3×C30C6×D15S3×C10D30C3×C15S3×C6C30C3×C6C15D6C32C6C3C10C6C5C3C2C1
# reps111111122244448121244

Matrix representation of D6⋊D15 in GL6(𝔽61)

6000000
0600000
0060100
0060000
000010
000001
,
60410000
010000
0060000
0060100
000010
000001
,
100000
010000
001000
000100
00004249
00001230
,
13260000
17480000
0060000
0006000
00001912
00003142

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,60,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,41,1,0,0,0,0,0,0,60,60,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,42,12,0,0,0,0,49,30],[13,17,0,0,0,0,26,48,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,19,31,0,0,0,0,12,42] >;

D6⋊D15 in GAP, Magma, Sage, TeX

D_6\rtimes D_{15}
% in TeX

G:=Group("D6:D15");
// GroupNames label

G:=SmallGroup(360,80);
// by ID

G=gap.SmallGroup(360,80);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,73,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽