Extensions 1→N→G→Q→1 with N=C3 and Q=C2×S3×D5

Direct product G=N×Q with N=C3 and Q=C2×S3×D5
dρLabelID
S3×C6×D5604S3xC6xD5360,151

Semidirect products G=N:Q with N=C3 and Q=C2×S3×D5
extensionφ:Q→Aut NdρLabelID
C31(C2×S3×D5) = S32×D5φ: C2×S3×D5/S3×D5C2 ⊆ Aut C3308+C3:1(C2xS3xD5)360,137
C32(C2×S3×D5) = C2×D5×C3⋊S3φ: C2×S3×D5/C6×D5C2 ⊆ Aut C390C3:2(C2xS3xD5)360,152
C33(C2×S3×D5) = C2×S3×D15φ: C2×S3×D5/S3×C10C2 ⊆ Aut C3604+C3:3(C2xS3xD5)360,154
C34(C2×S3×D5) = C2×D15⋊S3φ: C2×S3×D5/D30C2 ⊆ Aut C3604C3:4(C2xS3xD5)360,155

Non-split extensions G=N.Q with N=C3 and Q=C2×S3×D5
extensionφ:Q→Aut NdρLabelID
C3.(C2×S3×D5) = C2×D5×D9φ: C2×S3×D5/C6×D5C2 ⊆ Aut C3904+C3.(C2xS3xD5)360,45

׿
×
𝔽