direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×D15⋊S3, C30⋊2D6, D15⋊2D6, D30⋊5S3, C10⋊2S32, C6⋊3(S3×D5), C3⋊S3⋊2D10, (C3×C6)⋊2D10, (C3×C15)⋊5C23, (C6×D15)⋊11C2, (C3×C30)⋊4C22, C15⋊3(C22×S3), C32⋊3(C22×D5), (C3×D15)⋊4C22, C5⋊3(C2×S32), C3⋊4(C2×S3×D5), (C2×C3⋊S3)⋊4D5, (C10×C3⋊S3)⋊5C2, (C5×C3⋊S3)⋊3C22, SmallGroup(360,155)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C15 — C2×D15⋊S3 |
Generators and relations for C2×D15⋊S3
G = < a,b,c,d,e | a2=b15=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe=b11, cd=dc, ece=b10c, ede=d-1 >
Subgroups: 924 in 138 conjugacy classes, 39 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, C5, S3, C6, C6, C23, C32, D5, C10, C10, D6, C2×C6, C15, C15, C3×S3, C3⋊S3, C3×C6, D10, C2×C10, C22×S3, C5×S3, C3×D5, D15, C30, C30, S32, S3×C6, C2×C3⋊S3, C22×D5, C3×C15, S3×D5, C6×D5, S3×C10, D30, C2×S32, C3×D15, C5×C3⋊S3, C3×C30, C2×S3×D5, D15⋊S3, C6×D15, C10×C3⋊S3, C2×D15⋊S3
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, C22×S3, S32, C22×D5, S3×D5, C2×S32, C2×S3×D5, D15⋊S3, C2×D15⋊S3
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(31 58)(32 59)(33 60)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)(45 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 45)(23 44)(24 43)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(2 12)(3 8)(5 15)(6 11)(9 14)(16 21)(18 28)(19 24)(22 27)(25 30)(31 41)(32 37)(34 44)(35 40)(38 43)(46 56)(47 52)(49 59)(50 55)(53 58)
G:=sub<Sym(60)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,58)(32,59)(33,60)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (2,12)(3,8)(5,15)(6,11)(9,14)(16,21)(18,28)(19,24)(22,27)(25,30)(31,41)(32,37)(34,44)(35,40)(38,43)(46,56)(47,52)(49,59)(50,55)(53,58)>;
G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,58)(32,59)(33,60)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (2,12)(3,8)(5,15)(6,11)(9,14)(16,21)(18,28)(19,24)(22,27)(25,30)(31,41)(32,37)(34,44)(35,40)(38,43)(46,56)(47,52)(49,59)(50,55)(53,58) );
G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(31,58),(32,59),(33,60),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56),(45,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,45),(23,44),(24,43),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(2,12),(3,8),(5,15),(6,11),(9,14),(16,21),(18,28),(19,24),(22,27),(25,30),(31,41),(32,37),(34,44),(35,40),(38,43),(46,56),(47,52),(49,59),(50,55),(53,58)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 10A | 10B | 10C | 10D | 10E | 10F | 15A | ··· | 15H | 30A | ··· | 30H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 15 | ··· | 15 | 30 | ··· | 30 |
size | 1 | 1 | 9 | 9 | 15 | 15 | 15 | 15 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 30 | 30 | 30 | 30 | 2 | 2 | 18 | 18 | 18 | 18 | 4 | ··· | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | S3 | D5 | D6 | D6 | D10 | D10 | S32 | S3×D5 | C2×S32 | C2×S3×D5 | D15⋊S3 | C2×D15⋊S3 |
kernel | C2×D15⋊S3 | D15⋊S3 | C6×D15 | C10×C3⋊S3 | D30 | C2×C3⋊S3 | D15 | C30 | C3⋊S3 | C3×C6 | C10 | C6 | C5 | C3 | C2 | C1 |
# reps | 1 | 4 | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 2 | 1 | 4 | 1 | 4 | 4 | 4 |
Matrix representation of C2×D15⋊S3 ►in GL6(𝔽31)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
17 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 1 |
0 | 0 | 0 | 0 | 30 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 30 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 1 | 0 | 0 |
0 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,17,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0],[1,0,0,0,0,0,1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,30,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2×D15⋊S3 in GAP, Magma, Sage, TeX
C_2\times D_{15}\rtimes S_3
% in TeX
G:=Group("C2xD15:S3");
// GroupNames label
G:=SmallGroup(360,155);
// by ID
G=gap.SmallGroup(360,155);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-5,387,201,730,10373]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^15=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e=b^11,c*d=d*c,e*c*e=b^10*c,e*d*e=d^-1>;
// generators/relations