Copied to
clipboard

G = C2×D15⋊S3order 360 = 23·32·5

Direct product of C2 and D15⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×D15⋊S3, C302D6, D152D6, D305S3, C102S32, C63(S3×D5), C3⋊S32D10, (C3×C6)⋊2D10, (C3×C15)⋊5C23, (C6×D15)⋊11C2, (C3×C30)⋊4C22, C153(C22×S3), C323(C22×D5), (C3×D15)⋊4C22, C53(C2×S32), C34(C2×S3×D5), (C2×C3⋊S3)⋊4D5, (C10×C3⋊S3)⋊5C2, (C5×C3⋊S3)⋊3C22, SmallGroup(360,155)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C2×D15⋊S3
C1C5C15C3×C15C3×D15D15⋊S3 — C2×D15⋊S3
C3×C15 — C2×D15⋊S3
C1C2

Generators and relations for C2×D15⋊S3
 G = < a,b,c,d,e | a2=b15=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe=b11, cd=dc, ece=b10c, ede=d-1 >

Subgroups: 924 in 138 conjugacy classes, 39 normal (11 characteristic)
C1, C2, C2, C3, C3, C22, C5, S3, C6, C6, C23, C32, D5, C10, C10, D6, C2×C6, C15, C15, C3×S3, C3⋊S3, C3×C6, D10, C2×C10, C22×S3, C5×S3, C3×D5, D15, C30, C30, S32, S3×C6, C2×C3⋊S3, C22×D5, C3×C15, S3×D5, C6×D5, S3×C10, D30, C2×S32, C3×D15, C5×C3⋊S3, C3×C30, C2×S3×D5, D15⋊S3, C6×D15, C10×C3⋊S3, C2×D15⋊S3
Quotients: C1, C2, C22, S3, C23, D5, D6, D10, C22×S3, S32, C22×D5, S3×D5, C2×S32, C2×S3×D5, D15⋊S3, C2×D15⋊S3

Smallest permutation representation of C2×D15⋊S3
On 60 points
Generators in S60
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 25)(31 58)(32 59)(33 60)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)(41 53)(42 54)(43 55)(44 56)(45 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 45)(23 44)(24 43)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)
(2 12)(3 8)(5 15)(6 11)(9 14)(16 21)(18 28)(19 24)(22 27)(25 30)(31 41)(32 37)(34 44)(35 40)(38 43)(46 56)(47 52)(49 59)(50 55)(53 58)

G:=sub<Sym(60)| (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,58)(32,59)(33,60)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (2,12)(3,8)(5,15)(6,11)(9,14)(16,21)(18,28)(19,24)(22,27)(25,30)(31,41)(32,37)(34,44)(35,40)(38,43)(46,56)(47,52)(49,59)(50,55)(53,58)>;

G:=Group( (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,25)(31,58)(32,59)(33,60)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52)(41,53)(42,54)(43,55)(44,56)(45,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,45)(23,44)(24,43)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55), (2,12)(3,8)(5,15)(6,11)(9,14)(16,21)(18,28)(19,24)(22,27)(25,30)(31,41)(32,37)(34,44)(35,40)(38,43)(46,56)(47,52)(49,59)(50,55)(53,58) );

G=PermutationGroup([[(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,25),(31,58),(32,59),(33,60),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52),(41,53),(42,54),(43,55),(44,56),(45,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,45),(23,44),(24,43),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55)], [(2,12),(3,8),(5,15),(6,11),(9,14),(16,21),(18,28),(19,24),(22,27),(25,30),(31,41),(32,37),(34,44),(35,40),(38,43),(46,56),(47,52),(49,59),(50,55),(53,58)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C5A5B6A6B6C6D6E6F6G10A10B10C10D10E10F15A···15H30A···30H
order1222222233355666666610101010101015···1530···30
size119915151515224222243030303022181818184···44···4

42 irreducible representations

dim1111222222444444
type++++++++++++++
imageC1C2C2C2S3D5D6D6D10D10S32S3×D5C2×S32C2×S3×D5D15⋊S3C2×D15⋊S3
kernelC2×D15⋊S3D15⋊S3C6×D15C10×C3⋊S3D30C2×C3⋊S3D15C30C3⋊S3C3×C6C10C6C5C3C2C1
# reps1421224242141444

Matrix representation of C2×D15⋊S3 in GL6(𝔽31)

100000
010000
0030000
0003000
000010
000001
,
1600000
1720000
001000
000100
0000301
0000300
,
110000
0300000
0030000
0003000
0000300
0000301
,
100000
010000
0030100
0030000
000010
000001
,
3000000
0300000
000100
001000
000001
000010

G:=sub<GL(6,GF(31))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,17,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0],[1,0,0,0,0,0,1,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,30,30,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,30,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2×D15⋊S3 in GAP, Magma, Sage, TeX

C_2\times D_{15}\rtimes S_3
% in TeX

G:=Group("C2xD15:S3");
// GroupNames label

G:=SmallGroup(360,155);
// by ID

G=gap.SmallGroup(360,155);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,387,201,730,10373]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^15=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e=b^11,c*d=d*c,e*c*e=b^10*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽