Extensions 1→N→G→Q→1 with N=C32 and Q=S3×C7

Direct product G=N×Q with N=C32 and Q=S3×C7

Semidirect products G=N:Q with N=C32 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
C321(S3×C7) = C7×C32⋊C6φ: S3×C7/C7S3 ⊆ Aut C32636C3^2:1(S3xC7)378,34
C322(S3×C7) = C7×He3⋊C2φ: S3×C7/C7S3 ⊆ Aut C32633C3^2:2(S3xC7)378,41
C323(S3×C7) = C3⋊S3×C21φ: S3×C7/C21C2 ⊆ Aut C32126C3^2:3(S3xC7)378,56
C324(S3×C7) = C7×C33⋊C2φ: S3×C7/C21C2 ⊆ Aut C32189C3^2:4(S3xC7)378,58

Non-split extensions G=N.Q with N=C32 and Q=S3×C7
extensionφ:Q→Aut NdρLabelID
C32.(S3×C7) = C7×C9⋊C6φ: S3×C7/C7S3 ⊆ Aut C32636C3^2.(S3xC7)378,35
C32.2(S3×C7) = D9×C21φ: S3×C7/C21C2 ⊆ Aut C321262C3^2.2(S3xC7)378,32
C32.3(S3×C7) = C7×C9⋊S3φ: S3×C7/C21C2 ⊆ Aut C32189C3^2.3(S3xC7)378,40