Copied to
clipboard

G = C3⋊S3×C21order 378 = 2·33·7

Direct product of C21 and C3⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3⋊S3×C21, C332C14, C324C42, C3⋊(S3×C21), C217(C3×S3), (C3×C21)⋊8S3, (C3×C21)⋊19C6, C323(S3×C7), (C32×C21)⋊6C2, SmallGroup(378,56)

Series: Derived Chief Lower central Upper central

C1C32 — C3⋊S3×C21
C1C3C32C3×C21C32×C21 — C3⋊S3×C21
C32 — C3⋊S3×C21
C1C21

Generators and relations for C3⋊S3×C21
 G = < a,b,c,d | a21=b3=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 144 in 64 conjugacy classes, 28 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C7, C32, C32, C32, C14, C3×S3, C3⋊S3, C21, C21, C21, C33, S3×C7, C42, C3×C3⋊S3, C3×C21, C3×C21, C3×C21, S3×C21, C7×C3⋊S3, C32×C21, C3⋊S3×C21
Quotients: C1, C2, C3, S3, C6, C7, C14, C3×S3, C3⋊S3, C21, S3×C7, C42, C3×C3⋊S3, S3×C21, C7×C3⋊S3, C3⋊S3×C21

Smallest permutation representation of C3⋊S3×C21
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 75 34)(2 76 35)(3 77 36)(4 78 37)(5 79 38)(6 80 39)(7 81 40)(8 82 41)(9 83 42)(10 84 22)(11 64 23)(12 65 24)(13 66 25)(14 67 26)(15 68 27)(16 69 28)(17 70 29)(18 71 30)(19 72 31)(20 73 32)(21 74 33)(43 122 88)(44 123 89)(45 124 90)(46 125 91)(47 126 92)(48 106 93)(49 107 94)(50 108 95)(51 109 96)(52 110 97)(53 111 98)(54 112 99)(55 113 100)(56 114 101)(57 115 102)(58 116 103)(59 117 104)(60 118 105)(61 119 85)(62 120 86)(63 121 87)
(1 41 68)(2 42 69)(3 22 70)(4 23 71)(5 24 72)(6 25 73)(7 26 74)(8 27 75)(9 28 76)(10 29 77)(11 30 78)(12 31 79)(13 32 80)(14 33 81)(15 34 82)(16 35 83)(17 36 84)(18 37 64)(19 38 65)(20 39 66)(21 40 67)(43 102 108)(44 103 109)(45 104 110)(46 105 111)(47 85 112)(48 86 113)(49 87 114)(50 88 115)(51 89 116)(52 90 117)(53 91 118)(54 92 119)(55 93 120)(56 94 121)(57 95 122)(58 96 123)(59 97 124)(60 98 125)(61 99 126)(62 100 106)(63 101 107)
(1 60)(2 61)(3 62)(4 63)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 106)(23 107)(24 108)(25 109)(26 110)(27 111)(28 112)(29 113)(30 114)(31 115)(32 116)(33 117)(34 118)(35 119)(36 120)(37 121)(38 122)(39 123)(40 124)(41 125)(42 126)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(82 91)(83 92)(84 93)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,75,34)(2,76,35)(3,77,36)(4,78,37)(5,79,38)(6,80,39)(7,81,40)(8,82,41)(9,83,42)(10,84,22)(11,64,23)(12,65,24)(13,66,25)(14,67,26)(15,68,27)(16,69,28)(17,70,29)(18,71,30)(19,72,31)(20,73,32)(21,74,33)(43,122,88)(44,123,89)(45,124,90)(46,125,91)(47,126,92)(48,106,93)(49,107,94)(50,108,95)(51,109,96)(52,110,97)(53,111,98)(54,112,99)(55,113,100)(56,114,101)(57,115,102)(58,116,103)(59,117,104)(60,118,105)(61,119,85)(62,120,86)(63,121,87), (1,41,68)(2,42,69)(3,22,70)(4,23,71)(5,24,72)(6,25,73)(7,26,74)(8,27,75)(9,28,76)(10,29,77)(11,30,78)(12,31,79)(13,32,80)(14,33,81)(15,34,82)(16,35,83)(17,36,84)(18,37,64)(19,38,65)(20,39,66)(21,40,67)(43,102,108)(44,103,109)(45,104,110)(46,105,111)(47,85,112)(48,86,113)(49,87,114)(50,88,115)(51,89,116)(52,90,117)(53,91,118)(54,92,119)(55,93,120)(56,94,121)(57,95,122)(58,96,123)(59,97,124)(60,98,125)(61,99,126)(62,100,106)(63,101,107), (1,60)(2,61)(3,62)(4,63)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,75,34)(2,76,35)(3,77,36)(4,78,37)(5,79,38)(6,80,39)(7,81,40)(8,82,41)(9,83,42)(10,84,22)(11,64,23)(12,65,24)(13,66,25)(14,67,26)(15,68,27)(16,69,28)(17,70,29)(18,71,30)(19,72,31)(20,73,32)(21,74,33)(43,122,88)(44,123,89)(45,124,90)(46,125,91)(47,126,92)(48,106,93)(49,107,94)(50,108,95)(51,109,96)(52,110,97)(53,111,98)(54,112,99)(55,113,100)(56,114,101)(57,115,102)(58,116,103)(59,117,104)(60,118,105)(61,119,85)(62,120,86)(63,121,87), (1,41,68)(2,42,69)(3,22,70)(4,23,71)(5,24,72)(6,25,73)(7,26,74)(8,27,75)(9,28,76)(10,29,77)(11,30,78)(12,31,79)(13,32,80)(14,33,81)(15,34,82)(16,35,83)(17,36,84)(18,37,64)(19,38,65)(20,39,66)(21,40,67)(43,102,108)(44,103,109)(45,104,110)(46,105,111)(47,85,112)(48,86,113)(49,87,114)(50,88,115)(51,89,116)(52,90,117)(53,91,118)(54,92,119)(55,93,120)(56,94,121)(57,95,122)(58,96,123)(59,97,124)(60,98,125)(61,99,126)(62,100,106)(63,101,107), (1,60)(2,61)(3,62)(4,63)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,106)(23,107)(24,108)(25,109)(26,110)(27,111)(28,112)(29,113)(30,114)(31,115)(32,116)(33,117)(34,118)(35,119)(36,120)(37,121)(38,122)(39,123)(40,124)(41,125)(42,126)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,75,34),(2,76,35),(3,77,36),(4,78,37),(5,79,38),(6,80,39),(7,81,40),(8,82,41),(9,83,42),(10,84,22),(11,64,23),(12,65,24),(13,66,25),(14,67,26),(15,68,27),(16,69,28),(17,70,29),(18,71,30),(19,72,31),(20,73,32),(21,74,33),(43,122,88),(44,123,89),(45,124,90),(46,125,91),(47,126,92),(48,106,93),(49,107,94),(50,108,95),(51,109,96),(52,110,97),(53,111,98),(54,112,99),(55,113,100),(56,114,101),(57,115,102),(58,116,103),(59,117,104),(60,118,105),(61,119,85),(62,120,86),(63,121,87)], [(1,41,68),(2,42,69),(3,22,70),(4,23,71),(5,24,72),(6,25,73),(7,26,74),(8,27,75),(9,28,76),(10,29,77),(11,30,78),(12,31,79),(13,32,80),(14,33,81),(15,34,82),(16,35,83),(17,36,84),(18,37,64),(19,38,65),(20,39,66),(21,40,67),(43,102,108),(44,103,109),(45,104,110),(46,105,111),(47,85,112),(48,86,113),(49,87,114),(50,88,115),(51,89,116),(52,90,117),(53,91,118),(54,92,119),(55,93,120),(56,94,121),(57,95,122),(58,96,123),(59,97,124),(60,98,125),(61,99,126),(62,100,106),(63,101,107)], [(1,60),(2,61),(3,62),(4,63),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,106),(23,107),(24,108),(25,109),(26,110),(27,111),(28,112),(29,113),(30,114),(31,115),(32,116),(33,117),(34,118),(35,119),(36,120),(37,121),(38,122),(39,123),(40,124),(41,125),(42,126),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(82,91),(83,92),(84,93)]])

126 conjugacy classes

class 1  2 3A3B3C···3N6A6B7A···7F14A···14F21A···21L21M···21CF42A···42L
order12333···3667···714···1421···2121···2142···42
size19112···2991···19···91···12···29···9

126 irreducible representations

dim111111112222
type+++
imageC1C2C3C6C7C14C21C42S3C3×S3S3×C7S3×C21
kernelC3⋊S3×C21C32×C21C7×C3⋊S3C3×C21C3×C3⋊S3C33C3⋊S3C32C3×C21C21C32C3
# reps1122661212482448

Matrix representation of C3⋊S3×C21 in GL4(𝔽43) generated by

23000
02300
00130
00013
,
6000
03600
0010
0001
,
1000
0100
00360
0006
,
0100
1000
0001
0010
G:=sub<GL(4,GF(43))| [23,0,0,0,0,23,0,0,0,0,13,0,0,0,0,13],[6,0,0,0,0,36,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,6],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C3⋊S3×C21 in GAP, Magma, Sage, TeX

C_3\rtimes S_3\times C_{21}
% in TeX

G:=Group("C3:S3xC21");
// GroupNames label

G:=SmallGroup(378,56);
// by ID

G=gap.SmallGroup(378,56);
# by ID

G:=PCGroup([5,-2,-3,-7,-3,-3,1683,6304]);
// Polycyclic

G:=Group<a,b,c,d|a^21=b^3=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽