direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: S3×C7, C3⋊C14, C21⋊3C2, SmallGroup(42,3)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C7 |
Generators and relations for S3×C7
G = < a,b,c | a7=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of S3×C7
class | 1 | 2 | 3 | 7A | 7B | 7C | 7D | 7E | 7F | 14A | 14B | 14C | 14D | 14E | 14F | 21A | 21B | 21C | 21D | 21E | 21F | |
size | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | ζ75 | ζ73 | ζ74 | ζ7 | ζ76 | ζ72 | -ζ76 | -ζ7 | -ζ72 | -ζ73 | -ζ74 | -ζ75 | ζ7 | ζ75 | ζ73 | ζ76 | ζ72 | ζ74 | linear of order 14 |
ρ4 | 1 | 1 | 1 | ζ74 | ζ7 | ζ76 | ζ75 | ζ72 | ζ73 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ75 | ζ74 | ζ7 | ζ72 | ζ73 | ζ76 | linear of order 7 |
ρ5 | 1 | -1 | 1 | ζ72 | ζ74 | ζ73 | ζ76 | ζ7 | ζ75 | -ζ7 | -ζ76 | -ζ75 | -ζ74 | -ζ73 | -ζ72 | ζ76 | ζ72 | ζ74 | ζ7 | ζ75 | ζ73 | linear of order 14 |
ρ6 | 1 | 1 | 1 | ζ76 | ζ75 | ζ72 | ζ74 | ζ73 | ζ7 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ74 | ζ76 | ζ75 | ζ73 | ζ7 | ζ72 | linear of order 7 |
ρ7 | 1 | -1 | 1 | ζ74 | ζ7 | ζ76 | ζ75 | ζ72 | ζ73 | -ζ72 | -ζ75 | -ζ73 | -ζ7 | -ζ76 | -ζ74 | ζ75 | ζ74 | ζ7 | ζ72 | ζ73 | ζ76 | linear of order 14 |
ρ8 | 1 | -1 | 1 | ζ76 | ζ75 | ζ72 | ζ74 | ζ73 | ζ7 | -ζ73 | -ζ74 | -ζ7 | -ζ75 | -ζ72 | -ζ76 | ζ74 | ζ76 | ζ75 | ζ73 | ζ7 | ζ72 | linear of order 14 |
ρ9 | 1 | -1 | 1 | ζ7 | ζ72 | ζ75 | ζ73 | ζ74 | ζ76 | -ζ74 | -ζ73 | -ζ76 | -ζ72 | -ζ75 | -ζ7 | ζ73 | ζ7 | ζ72 | ζ74 | ζ76 | ζ75 | linear of order 14 |
ρ10 | 1 | -1 | 1 | ζ73 | ζ76 | ζ7 | ζ72 | ζ75 | ζ74 | -ζ75 | -ζ72 | -ζ74 | -ζ76 | -ζ7 | -ζ73 | ζ72 | ζ73 | ζ76 | ζ75 | ζ74 | ζ7 | linear of order 14 |
ρ11 | 1 | 1 | 1 | ζ73 | ζ76 | ζ7 | ζ72 | ζ75 | ζ74 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ72 | ζ73 | ζ76 | ζ75 | ζ74 | ζ7 | linear of order 7 |
ρ12 | 1 | 1 | 1 | ζ72 | ζ74 | ζ73 | ζ76 | ζ7 | ζ75 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ76 | ζ72 | ζ74 | ζ7 | ζ75 | ζ73 | linear of order 7 |
ρ13 | 1 | 1 | 1 | ζ75 | ζ73 | ζ74 | ζ7 | ζ76 | ζ72 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ7 | ζ75 | ζ73 | ζ76 | ζ72 | ζ74 | linear of order 7 |
ρ14 | 1 | 1 | 1 | ζ7 | ζ72 | ζ75 | ζ73 | ζ74 | ζ76 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ73 | ζ7 | ζ72 | ζ74 | ζ76 | ζ75 | linear of order 7 |
ρ15 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ16 | 2 | 0 | -1 | 2ζ74 | 2ζ7 | 2ζ76 | 2ζ75 | 2ζ72 | 2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75 | -ζ74 | -ζ7 | -ζ72 | -ζ73 | -ζ76 | complex faithful |
ρ17 | 2 | 0 | -1 | 2ζ76 | 2ζ75 | 2ζ72 | 2ζ74 | 2ζ73 | 2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74 | -ζ76 | -ζ75 | -ζ73 | -ζ7 | -ζ72 | complex faithful |
ρ18 | 2 | 0 | -1 | 2ζ73 | 2ζ76 | 2ζ7 | 2ζ72 | 2ζ75 | 2ζ74 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ72 | -ζ73 | -ζ76 | -ζ75 | -ζ74 | -ζ7 | complex faithful |
ρ19 | 2 | 0 | -1 | 2ζ7 | 2ζ72 | 2ζ75 | 2ζ73 | 2ζ74 | 2ζ76 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ73 | -ζ7 | -ζ72 | -ζ74 | -ζ76 | -ζ75 | complex faithful |
ρ20 | 2 | 0 | -1 | 2ζ72 | 2ζ74 | 2ζ73 | 2ζ76 | 2ζ7 | 2ζ75 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76 | -ζ72 | -ζ74 | -ζ7 | -ζ75 | -ζ73 | complex faithful |
ρ21 | 2 | 0 | -1 | 2ζ75 | 2ζ73 | 2ζ74 | 2ζ7 | 2ζ76 | 2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ7 | -ζ75 | -ζ73 | -ζ76 | -ζ72 | -ζ74 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)
(1 10 18)(2 11 19)(3 12 20)(4 13 21)(5 14 15)(6 8 16)(7 9 17)
(8 16)(9 17)(10 18)(11 19)(12 20)(13 21)(14 15)
G:=sub<Sym(21)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,10,18)(2,11,19)(3,12,20)(4,13,21)(5,14,15)(6,8,16)(7,9,17), (8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,15)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21), (1,10,18)(2,11,19)(3,12,20)(4,13,21)(5,14,15)(6,8,16)(7,9,17), (8,16)(9,17)(10,18)(11,19)(12,20)(13,21)(14,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21)], [(1,10,18),(2,11,19),(3,12,20),(4,13,21),(5,14,15),(6,8,16),(7,9,17)], [(8,16),(9,17),(10,18),(11,19),(12,20),(13,21),(14,15)]])
G:=TransitiveGroup(21,6);
Matrix representation of S3×C7 ►in GL2(𝔽29) generated by
16 | 0 |
0 | 16 |
0 | 22 |
25 | 28 |
1 | 22 |
0 | 28 |
G:=sub<GL(2,GF(29))| [16,0,0,16],[0,25,22,28],[1,0,22,28] >;
S3×C7 in GAP, Magma, Sage, TeX
S_3\times C_7
% in TeX
G:=Group("S3xC7");
// GroupNames label
G:=SmallGroup(42,3);
// by ID
G=gap.SmallGroup(42,3);
# by ID
G:=PCGroup([3,-2,-7,-3,254]);
// Polycyclic
G:=Group<a,b,c|a^7=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of S3×C7 in TeX
Character table of S3×C7 in TeX