# Extensions 1→N→G→Q→1 with N=C3×D5 and Q=D6

Direct product G=N×Q with N=C3×D5 and Q=D6
dρLabelID
S3×C6×D5604S3xC6xD5360,151

Semidirect products G=N:Q with N=C3×D5 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊1D6 = S32×D5φ: D6/S3C2 ⊆ Out C3×D5308+(C3xD5):1D6360,137
(C3×D5)⋊2D6 = C2×D5×C3⋊S3φ: D6/C6C2 ⊆ Out C3×D590(C3xD5):2D6360,152

Non-split extensions G=N.Q with N=C3×D5 and Q=D6
extensionφ:Q→Out NdρLabelID
(C3×D5).1D6 = D9×F5φ: D6/C3C22 ⊆ Out C3×D5458+(C3xD5).1D6360,39
(C3×D5).2D6 = C3⋊S3×F5φ: D6/C3C22 ⊆ Out C3×D545(C3xD5).2D6360,127
(C3×D5).3D6 = C3⋊F5⋊S3φ: D6/C3C22 ⊆ Out C3×D5308+(C3xD5).3D6360,129
(C3×D5).4D6 = S3×C3⋊F5φ: D6/S3C2 ⊆ Out C3×D5308(C3xD5).4D6360,128
(C3×D5).5D6 = C3×S3×F5φ: D6/S3C2 ⊆ Out C3×D5308(C3xD5).5D6360,126
(C3×D5).6D6 = C2×D5×D9φ: D6/C6C2 ⊆ Out C3×D5904+(C3xD5).6D6360,45
(C3×D5).7D6 = C2×C9⋊F5φ: D6/C6C2 ⊆ Out C3×D5904(C3xD5).7D6360,44
(C3×D5).8D6 = C2×C323F5φ: D6/C6C2 ⊆ Out C3×D590(C3xD5).8D6360,147
(C3×D5).9D6 = C6×C3⋊F5φ: D6/C6C2 ⊆ Out C3×D5604(C3xD5).9D6360,146

׿
×
𝔽