Copied to
clipboard

G = C3×D5order 30 = 2·3·5

Direct product of C3 and D5

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3×D5, C5⋊C6, C152C2, SmallGroup(30,2)

Series: Derived Chief Lower central Upper central

C1C5 — C3×D5
C1C5C15 — C3×D5
C5 — C3×D5
C1C3

Generators and relations for C3×D5
 G = < a,b,c | a3=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
5C6

Character table of C3×D5

 class 123A3B5A5B6A6B15A15B15C15D
 size 151122552222
ρ1111111111111    trivial
ρ21-11111-1-11111    linear of order 2
ρ311ζ32ζ311ζ32ζ3ζ32ζ3ζ32ζ3    linear of order 3
ρ411ζ3ζ3211ζ3ζ32ζ3ζ32ζ3ζ32    linear of order 3
ρ51-1ζ32ζ311ζ6ζ65ζ32ζ3ζ32ζ3    linear of order 6
ρ61-1ζ3ζ3211ζ65ζ6ζ3ζ32ζ3ζ32    linear of order 6
ρ72022-1-5/2-1+5/200-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ82022-1+5/2-1-5/200-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ920-1--3-1+-3-1-5/2-1+5/200ζ32ζ5332ζ52ζ3ζ533ζ52ζ32ζ5432ζ5ζ3ζ543ζ5    complex faithful
ρ1020-1--3-1+-3-1+5/2-1-5/200ζ32ζ5432ζ5ζ3ζ543ζ5ζ32ζ5332ζ52ζ3ζ533ζ52    complex faithful
ρ1120-1+-3-1--3-1+5/2-1-5/200ζ3ζ543ζ5ζ32ζ5432ζ5ζ3ζ533ζ52ζ32ζ5332ζ52    complex faithful
ρ1220-1+-3-1--3-1-5/2-1+5/200ζ3ζ533ζ52ζ32ζ5332ζ52ζ3ζ543ζ5ζ32ζ5432ζ5    complex faithful

Permutation representations of C3×D5
On 15 points - transitive group 15T3
Generators in S15
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)

G:=sub<Sym(15)| (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)>;

G:=Group( (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14) );

G=PermutationGroup([[(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14)]])

G:=TransitiveGroup(15,3);

Regular action on 30 points - transitive group 30T4
Generators in S30
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 23)(7 22)(8 21)(9 25)(10 24)(11 28)(12 27)(13 26)(14 30)(15 29)

G:=sub<Sym(30)| (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,20)(2,19)(3,18)(4,17)(5,16)(6,23)(7,22)(8,21)(9,25)(10,24)(11,28)(12,27)(13,26)(14,30)(15,29)>;

G:=Group( (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,20)(2,19)(3,18)(4,17)(5,16)(6,23)(7,22)(8,21)(9,25)(10,24)(11,28)(12,27)(13,26)(14,30)(15,29) );

G=PermutationGroup([[(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,23),(7,22),(8,21),(9,25),(10,24),(11,28),(12,27),(13,26),(14,30),(15,29)]])

G:=TransitiveGroup(30,4);

C3×D5 is a maximal subgroup of   C3⋊F5  C5⋊F7  D65⋊C3  F16⋊C2
C3×D5 is a maximal quotient of   C5⋊F7  D65⋊C3  F16⋊C2

Polynomial with Galois group C3×D5 over ℚ
actionf(x)Disc(f)
15T3x15+2x14+2x13-2x11-12x10+37x9-2x8+37x7+37x6-39x5-47x4-22x3-6x2+1710·476·836·22132·23512

Matrix representation of C3×D5 in GL2(𝔽19) generated by

110
011
,
185
145
,
518
514
G:=sub<GL(2,GF(19))| [11,0,0,11],[18,14,5,5],[5,5,18,14] >;

C3×D5 in GAP, Magma, Sage, TeX

C_3\times D_5
% in TeX

G:=Group("C3xD5");
// GroupNames label

G:=SmallGroup(30,2);
// by ID

G=gap.SmallGroup(30,2);
# by ID

G:=PCGroup([3,-2,-3,-5,218]);
// Polycyclic

G:=Group<a,b,c|a^3=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×D5 in TeX
Character table of C3×D5 in TeX

׿
×
𝔽