Extensions 1→N→G→Q→1 with N=C40 and Q=D5

Direct product G=N×Q with N=C40 and Q=D5
dρLabelID
D5×C40802D5xC40400,76

Semidirect products G=N:Q with N=C40 and Q=D5
extensionφ:Q→Aut NdρLabelID
C401D5 = C525D8φ: D5/C5C2 ⊆ Aut C40200C40:1D5400,95
C402D5 = C402D5φ: D5/C5C2 ⊆ Aut C40200C40:2D5400,94
C403D5 = C8×C5⋊D5φ: D5/C5C2 ⊆ Aut C40200C40:3D5400,92
C404D5 = C40⋊D5φ: D5/C5C2 ⊆ Aut C40200C40:4D5400,93
C405D5 = C5×D40φ: D5/C5C2 ⊆ Aut C40802C40:5D5400,79
C406D5 = C5×C40⋊C2φ: D5/C5C2 ⊆ Aut C40802C40:6D5400,78
C407D5 = C5×C8⋊D5φ: D5/C5C2 ⊆ Aut C40802C40:7D5400,77

Non-split extensions G=N.Q with N=C40 and Q=D5
extensionφ:Q→Aut NdρLabelID
C40.1D5 = Dic100φ: D5/C5C2 ⊆ Aut C404002-C40.1D5400,4
C40.2D5 = D200φ: D5/C5C2 ⊆ Aut C402002+C40.2D5400,8
C40.3D5 = C40.D5φ: D5/C5C2 ⊆ Aut C40400C40.3D5400,96
C40.4D5 = C200⋊C2φ: D5/C5C2 ⊆ Aut C402002C40.4D5400,7
C40.5D5 = C252C16φ: D5/C5C2 ⊆ Aut C404002C40.5D5400,1
C40.6D5 = C8×D25φ: D5/C5C2 ⊆ Aut C402002C40.6D5400,5
C40.7D5 = C8⋊D25φ: D5/C5C2 ⊆ Aut C402002C40.7D5400,6
C40.8D5 = C527C16φ: D5/C5C2 ⊆ Aut C40400C40.8D5400,50
C40.9D5 = C5×Dic20φ: D5/C5C2 ⊆ Aut C40802C40.9D5400,80
C40.10D5 = C5×C52C16central extension (φ=1)802C40.10D5400,49

׿
×
𝔽