direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C5×C5⋊2C16, C5⋊2C80, C52⋊6C16, C40.2C10, C20.5C20, C10.2C40, C40.10D5, C20.13Dic5, C8.2(C5×D5), (C5×C40).3C2, (C5×C10).6C8, (C5×C20).15C4, C4.2(C5×Dic5), C10.5(C5⋊2C8), C2.(C5×C5⋊2C8), SmallGroup(400,49)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5×C5⋊2C16 |
Generators and relations for C5×C5⋊2C16
G = < a,b,c | a5=b5=c16=1, ab=ba, ac=ca, cbc-1=b-1 >
(1 44 74 26 49)(2 45 75 27 50)(3 46 76 28 51)(4 47 77 29 52)(5 48 78 30 53)(6 33 79 31 54)(7 34 80 32 55)(8 35 65 17 56)(9 36 66 18 57)(10 37 67 19 58)(11 38 68 20 59)(12 39 69 21 60)(13 40 70 22 61)(14 41 71 23 62)(15 42 72 24 63)(16 43 73 25 64)
(1 26 44 49 74)(2 75 50 45 27)(3 28 46 51 76)(4 77 52 47 29)(5 30 48 53 78)(6 79 54 33 31)(7 32 34 55 80)(8 65 56 35 17)(9 18 36 57 66)(10 67 58 37 19)(11 20 38 59 68)(12 69 60 39 21)(13 22 40 61 70)(14 71 62 41 23)(15 24 42 63 72)(16 73 64 43 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,44,74,26,49)(2,45,75,27,50)(3,46,76,28,51)(4,47,77,29,52)(5,48,78,30,53)(6,33,79,31,54)(7,34,80,32,55)(8,35,65,17,56)(9,36,66,18,57)(10,37,67,19,58)(11,38,68,20,59)(12,39,69,21,60)(13,40,70,22,61)(14,41,71,23,62)(15,42,72,24,63)(16,43,73,25,64), (1,26,44,49,74)(2,75,50,45,27)(3,28,46,51,76)(4,77,52,47,29)(5,30,48,53,78)(6,79,54,33,31)(7,32,34,55,80)(8,65,56,35,17)(9,18,36,57,66)(10,67,58,37,19)(11,20,38,59,68)(12,69,60,39,21)(13,22,40,61,70)(14,71,62,41,23)(15,24,42,63,72)(16,73,64,43,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,44,74,26,49)(2,45,75,27,50)(3,46,76,28,51)(4,47,77,29,52)(5,48,78,30,53)(6,33,79,31,54)(7,34,80,32,55)(8,35,65,17,56)(9,36,66,18,57)(10,37,67,19,58)(11,38,68,20,59)(12,39,69,21,60)(13,40,70,22,61)(14,41,71,23,62)(15,42,72,24,63)(16,43,73,25,64), (1,26,44,49,74)(2,75,50,45,27)(3,28,46,51,76)(4,77,52,47,29)(5,30,48,53,78)(6,79,54,33,31)(7,32,34,55,80)(8,65,56,35,17)(9,18,36,57,66)(10,67,58,37,19)(11,20,38,59,68)(12,69,60,39,21)(13,22,40,61,70)(14,71,62,41,23)(15,24,42,63,72)(16,73,64,43,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,44,74,26,49),(2,45,75,27,50),(3,46,76,28,51),(4,47,77,29,52),(5,48,78,30,53),(6,33,79,31,54),(7,34,80,32,55),(8,35,65,17,56),(9,36,66,18,57),(10,37,67,19,58),(11,38,68,20,59),(12,39,69,21,60),(13,40,70,22,61),(14,41,71,23,62),(15,42,72,24,63),(16,43,73,25,64)], [(1,26,44,49,74),(2,75,50,45,27),(3,28,46,51,76),(4,77,52,47,29),(5,30,48,53,78),(6,79,54,33,31),(7,32,34,55,80),(8,65,56,35,17),(9,18,36,57,66),(10,67,58,37,19),(11,20,38,59,68),(12,69,60,39,21),(13,22,40,61,70),(14,71,62,41,23),(15,24,42,63,72),(16,73,64,43,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
160 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 5E | ··· | 5N | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | ··· | 10N | 16A | ··· | 16H | 20A | ··· | 20H | 20I | ··· | 20AB | 40A | ··· | 40P | 40Q | ··· | 40BD | 80A | ··· | 80AF |
order | 1 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 5 | ··· | 5 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 5 | ··· | 5 |
160 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | ||||||||||||||
image | C1 | C2 | C4 | C5 | C8 | C10 | C16 | C20 | C40 | C80 | D5 | Dic5 | C5⋊2C8 | C5×D5 | C5⋊2C16 | C5×Dic5 | C5×C5⋊2C8 | C5×C5⋊2C16 |
kernel | C5×C5⋊2C16 | C5×C40 | C5×C20 | C5⋊2C16 | C5×C10 | C40 | C52 | C20 | C10 | C5 | C40 | C20 | C10 | C8 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 16 | 32 | 2 | 2 | 4 | 8 | 8 | 8 | 16 | 32 |
Matrix representation of C5×C5⋊2C16 ►in GL2(𝔽41) generated by
16 | 0 |
0 | 16 |
37 | 0 |
0 | 10 |
0 | 27 |
1 | 0 |
G:=sub<GL(2,GF(41))| [16,0,0,16],[37,0,0,10],[0,1,27,0] >;
C5×C5⋊2C16 in GAP, Magma, Sage, TeX
C_5\times C_5\rtimes_2C_{16}
% in TeX
G:=Group("C5xC5:2C16");
// GroupNames label
G:=SmallGroup(400,49);
// by ID
G=gap.SmallGroup(400,49);
# by ID
G:=PCGroup([6,-2,-5,-2,-2,-2,-5,60,50,69,11525]);
// Polycyclic
G:=Group<a,b,c|a^5=b^5=c^16=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export