Extensions 1→N→G→Q→1 with N=C50 and Q=C2xC4

Direct product G=NxQ with N=C50 and Q=C2xC4
dρLabelID
C22xC100400C2^2xC100400,45

Semidirect products G=N:Q with N=C50 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C50:(C2xC4) = C22xC25:C4φ: C2xC4/C2C4 ⊆ Aut C50100C50:(C2xC4)400,53
C50:2(C2xC4) = C2xC4xD25φ: C2xC4/C4C2 ⊆ Aut C50200C50:2(C2xC4)400,36
C50:3(C2xC4) = C22xDic25φ: C2xC4/C22C2 ⊆ Aut C50400C50:3(C2xC4)400,43

Non-split extensions G=N.Q with N=C50 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
C50.1(C2xC4) = D25:C8φ: C2xC4/C2C4 ⊆ Aut C502004C50.1(C2xC4)400,28
C50.2(C2xC4) = C100.C4φ: C2xC4/C2C4 ⊆ Aut C502004C50.2(C2xC4)400,29
C50.3(C2xC4) = C4xC25:C4φ: C2xC4/C2C4 ⊆ Aut C501004C50.3(C2xC4)400,30
C50.4(C2xC4) = C100:C4φ: C2xC4/C2C4 ⊆ Aut C501004C50.4(C2xC4)400,31
C50.5(C2xC4) = C2xC25:C8φ: C2xC4/C2C4 ⊆ Aut C50400C50.5(C2xC4)400,32
C50.6(C2xC4) = C25:M4(2)φ: C2xC4/C2C4 ⊆ Aut C502004-C50.6(C2xC4)400,33
C50.7(C2xC4) = D25.D4φ: C2xC4/C2C4 ⊆ Aut C501004+C50.7(C2xC4)400,34
C50.8(C2xC4) = C8xD25φ: C2xC4/C4C2 ⊆ Aut C502002C50.8(C2xC4)400,5
C50.9(C2xC4) = C8:D25φ: C2xC4/C4C2 ⊆ Aut C502002C50.9(C2xC4)400,6
C50.10(C2xC4) = C4xDic25φ: C2xC4/C4C2 ⊆ Aut C50400C50.10(C2xC4)400,11
C50.11(C2xC4) = C50.D4φ: C2xC4/C4C2 ⊆ Aut C50400C50.11(C2xC4)400,12
C50.12(C2xC4) = D50:C4φ: C2xC4/C4C2 ⊆ Aut C50200C50.12(C2xC4)400,14
C50.13(C2xC4) = C2xC25:2C8φ: C2xC4/C22C2 ⊆ Aut C50400C50.13(C2xC4)400,9
C50.14(C2xC4) = C4.Dic25φ: C2xC4/C22C2 ⊆ Aut C502002C50.14(C2xC4)400,10
C50.15(C2xC4) = C4:Dic25φ: C2xC4/C22C2 ⊆ Aut C50400C50.15(C2xC4)400,13
C50.16(C2xC4) = C23.D25φ: C2xC4/C22C2 ⊆ Aut C50200C50.16(C2xC4)400,19
C50.17(C2xC4) = C22:C4xC25central extension (φ=1)200C50.17(C2xC4)400,21
C50.18(C2xC4) = C4:C4xC25central extension (φ=1)400C50.18(C2xC4)400,22
C50.19(C2xC4) = M4(2)xC25central extension (φ=1)2002C50.19(C2xC4)400,24

׿
x
:
Z
F
o
wr
Q
<