Copied to
clipboard

G = D25.D4order 400 = 24·52

The non-split extension by D25 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D502C4, D25.2D4, D50.6C22, (C2×C50)⋊1C4, C25⋊(C22⋊C4), C22⋊(C25⋊C4), C50.7(C2×C4), (C2×C10).3F5, C5.(C22⋊F5), C10.12(C2×F5), (C22×D25).2C2, (C2×C25⋊C4)⋊C2, C2.7(C2×C25⋊C4), SmallGroup(400,34)

Series: Derived Chief Lower central Upper central

C1C50 — D25.D4
C1C5C25D25D50C2×C25⋊C4 — D25.D4
C25C50 — D25.D4
C1C2C22

Generators and relations for D25.D4
 G = < a,b,c,d | a25=b2=c4=1, d2=a-1b, bab=a-1, cac-1=dad-1=a18, cbc-1=dbd-1=a17b, dcd-1=a-1bc-1 >

2C2
25C2
25C2
50C2
25C22
25C22
50C4
50C22
50C22
50C4
2C10
5D5
5D5
10D5
25C23
25C2×C4
25C2×C4
5D10
5D10
10D10
10D10
10F5
10F5
2D25
2C50
25C22⋊C4
5C2×F5
5C22×D5
5C2×F5
2C25⋊C4
2C25⋊C4
2D50
2D50
5C22⋊F5

Smallest permutation representation of D25.D4
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 38)(2 37)(3 36)(4 35)(5 34)(6 33)(7 32)(8 31)(9 30)(10 29)(11 28)(12 27)(13 26)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(51 80)(52 79)(53 78)(54 77)(55 76)(56 100)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)
(2 8 25 19)(3 15 24 12)(4 22 23 5)(6 11 21 16)(7 18 20 9)(10 14 17 13)(26 48 27 30)(28 37 50 41)(29 44 49 34)(31 33 47 45)(32 40 46 38)(35 36 43 42)(51 97 72 94)(52 79 71 87)(53 86 70 80)(54 93 69 98)(55 100 68 91)(56 82 67 84)(57 89 66 77)(58 96 65 95)(59 78 64 88)(60 85 63 81)(61 92 62 99)(73 76 75 90)(74 83)
(1 74 39 83)(2 56 38 76)(3 63 37 94)(4 70 36 87)(5 52 35 80)(6 59 34 98)(7 66 33 91)(8 73 32 84)(9 55 31 77)(10 62 30 95)(11 69 29 88)(12 51 28 81)(13 58 27 99)(14 65 26 92)(15 72 50 85)(16 54 49 78)(17 61 48 96)(18 68 47 89)(19 75 46 82)(20 57 45 100)(21 64 44 93)(22 71 43 86)(23 53 42 79)(24 60 41 97)(25 67 40 90)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(51,80)(52,79)(53,78)(54,77)(55,76)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42)(51,97,72,94)(52,79,71,87)(53,86,70,80)(54,93,69,98)(55,100,68,91)(56,82,67,84)(57,89,66,77)(58,96,65,95)(59,78,64,88)(60,85,63,81)(61,92,62,99)(73,76,75,90)(74,83), (1,74,39,83)(2,56,38,76)(3,63,37,94)(4,70,36,87)(5,52,35,80)(6,59,34,98)(7,66,33,91)(8,73,32,84)(9,55,31,77)(10,62,30,95)(11,69,29,88)(12,51,28,81)(13,58,27,99)(14,65,26,92)(15,72,50,85)(16,54,49,78)(17,61,48,96)(18,68,47,89)(19,75,46,82)(20,57,45,100)(21,64,44,93)(22,71,43,86)(23,53,42,79)(24,60,41,97)(25,67,40,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,38)(2,37)(3,36)(4,35)(5,34)(6,33)(7,32)(8,31)(9,30)(10,29)(11,28)(12,27)(13,26)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(51,80)(52,79)(53,78)(54,77)(55,76)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,48,27,30)(28,37,50,41)(29,44,49,34)(31,33,47,45)(32,40,46,38)(35,36,43,42)(51,97,72,94)(52,79,71,87)(53,86,70,80)(54,93,69,98)(55,100,68,91)(56,82,67,84)(57,89,66,77)(58,96,65,95)(59,78,64,88)(60,85,63,81)(61,92,62,99)(73,76,75,90)(74,83), (1,74,39,83)(2,56,38,76)(3,63,37,94)(4,70,36,87)(5,52,35,80)(6,59,34,98)(7,66,33,91)(8,73,32,84)(9,55,31,77)(10,62,30,95)(11,69,29,88)(12,51,28,81)(13,58,27,99)(14,65,26,92)(15,72,50,85)(16,54,49,78)(17,61,48,96)(18,68,47,89)(19,75,46,82)(20,57,45,100)(21,64,44,93)(22,71,43,86)(23,53,42,79)(24,60,41,97)(25,67,40,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,38),(2,37),(3,36),(4,35),(5,34),(6,33),(7,32),(8,31),(9,30),(10,29),(11,28),(12,27),(13,26),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(51,80),(52,79),(53,78),(54,77),(55,76),(56,100),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81)], [(2,8,25,19),(3,15,24,12),(4,22,23,5),(6,11,21,16),(7,18,20,9),(10,14,17,13),(26,48,27,30),(28,37,50,41),(29,44,49,34),(31,33,47,45),(32,40,46,38),(35,36,43,42),(51,97,72,94),(52,79,71,87),(53,86,70,80),(54,93,69,98),(55,100,68,91),(56,82,67,84),(57,89,66,77),(58,96,65,95),(59,78,64,88),(60,85,63,81),(61,92,62,99),(73,76,75,90),(74,83)], [(1,74,39,83),(2,56,38,76),(3,63,37,94),(4,70,36,87),(5,52,35,80),(6,59,34,98),(7,66,33,91),(8,73,32,84),(9,55,31,77),(10,62,30,95),(11,69,29,88),(12,51,28,81),(13,58,27,99),(14,65,26,92),(15,72,50,85),(16,54,49,78),(17,61,48,96),(18,68,47,89),(19,75,46,82),(20,57,45,100),(21,64,44,93),(22,71,43,86),(23,53,42,79),(24,60,41,97),(25,67,40,90)]])

34 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D 5 10A10B10C25A···25E50A···50O
order1222224444510101025···2550···50
size1122525505050505044444···44···4

34 irreducible representations

dim111112444444
type++++++++++
imageC1C2C2C4C4D4F5C2×F5C22⋊F5C25⋊C4C2×C25⋊C4D25.D4
kernelD25.D4C2×C25⋊C4C22×D25D50C2×C50D25C2×C10C10C5C22C2C1
# reps1212221125510

Matrix representation of D25.D4 in GL6(𝔽101)

100000
010000
0027935523
007847032
0069467338
006331835
,
100000
010000
008633531
0055272393
0073693846
0097667428
,
9100000
55100000
007846874
0063285532
002747335
0069319723
,
46810000
30550000
007846874
0063285532
002747335
0069319723

G:=sub<GL(6,GF(101))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,78,69,63,0,0,93,4,46,31,0,0,55,70,73,8,0,0,23,32,38,35],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,55,73,97,0,0,63,27,69,66,0,0,35,23,38,74,0,0,31,93,46,28],[91,55,0,0,0,0,0,10,0,0,0,0,0,0,78,63,27,69,0,0,46,28,4,31,0,0,8,55,73,97,0,0,74,32,35,23],[46,30,0,0,0,0,81,55,0,0,0,0,0,0,78,63,27,69,0,0,46,28,4,31,0,0,8,55,73,97,0,0,74,32,35,23] >;

D25.D4 in GAP, Magma, Sage, TeX

D_{25}.D_4
% in TeX

G:=Group("D25.D4");
// GroupNames label

G:=SmallGroup(400,34);
// by ID

G=gap.SmallGroup(400,34);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,3364,2896,178,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^25=b^2=c^4=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^18,c*b*c^-1=d*b*d^-1=a^17*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations

Export

Subgroup lattice of D25.D4 in TeX

׿
×
𝔽