Copied to
clipboard

## G = D201order 402 = 2·3·67

### Dihedral group

Aliases: D201, C67⋊S3, C3⋊D67, C2011C2, sometimes denoted D402 or Dih201 or Dih402, SmallGroup(402,5)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C201 — D201
 Chief series C1 — C67 — C201 — D201
 Lower central C201 — D201
 Upper central C1

Generators and relations for D201
G = < a,b | a201=b2=1, bab=a-1 >

201C2
67S3
3D67

Smallest permutation representation of D201
On 201 points
Generators in S201
```(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201)
(1 201)(2 200)(3 199)(4 198)(5 197)(6 196)(7 195)(8 194)(9 193)(10 192)(11 191)(12 190)(13 189)(14 188)(15 187)(16 186)(17 185)(18 184)(19 183)(20 182)(21 181)(22 180)(23 179)(24 178)(25 177)(26 176)(27 175)(28 174)(29 173)(30 172)(31 171)(32 170)(33 169)(34 168)(35 167)(36 166)(37 165)(38 164)(39 163)(40 162)(41 161)(42 160)(43 159)(44 158)(45 157)(46 156)(47 155)(48 154)(49 153)(50 152)(51 151)(52 150)(53 149)(54 148)(55 147)(56 146)(57 145)(58 144)(59 143)(60 142)(61 141)(62 140)(63 139)(64 138)(65 137)(66 136)(67 135)(68 134)(69 133)(70 132)(71 131)(72 130)(73 129)(74 128)(75 127)(76 126)(77 125)(78 124)(79 123)(80 122)(81 121)(82 120)(83 119)(84 118)(85 117)(86 116)(87 115)(88 114)(89 113)(90 112)(91 111)(92 110)(93 109)(94 108)(95 107)(96 106)(97 105)(98 104)(99 103)(100 102)```

`G:=sub<Sym(201)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201), (1,201)(2,200)(3,199)(4,198)(5,197)(6,196)(7,195)(8,194)(9,193)(10,192)(11,191)(12,190)(13,189)(14,188)(15,187)(16,186)(17,185)(18,184)(19,183)(20,182)(21,181)(22,180)(23,179)(24,178)(25,177)(26,176)(27,175)(28,174)(29,173)(30,172)(31,171)(32,170)(33,169)(34,168)(35,167)(36,166)(37,165)(38,164)(39,163)(40,162)(41,161)(42,160)(43,159)(44,158)(45,157)(46,156)(47,155)(48,154)(49,153)(50,152)(51,151)(52,150)(53,149)(54,148)(55,147)(56,146)(57,145)(58,144)(59,143)(60,142)(61,141)(62,140)(63,139)(64,138)(65,137)(66,136)(67,135)(68,134)(69,133)(70,132)(71,131)(72,130)(73,129)(74,128)(75,127)(76,126)(77,125)(78,124)(79,123)(80,122)(81,121)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,114)(89,113)(90,112)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201), (1,201)(2,200)(3,199)(4,198)(5,197)(6,196)(7,195)(8,194)(9,193)(10,192)(11,191)(12,190)(13,189)(14,188)(15,187)(16,186)(17,185)(18,184)(19,183)(20,182)(21,181)(22,180)(23,179)(24,178)(25,177)(26,176)(27,175)(28,174)(29,173)(30,172)(31,171)(32,170)(33,169)(34,168)(35,167)(36,166)(37,165)(38,164)(39,163)(40,162)(41,161)(42,160)(43,159)(44,158)(45,157)(46,156)(47,155)(48,154)(49,153)(50,152)(51,151)(52,150)(53,149)(54,148)(55,147)(56,146)(57,145)(58,144)(59,143)(60,142)(61,141)(62,140)(63,139)(64,138)(65,137)(66,136)(67,135)(68,134)(69,133)(70,132)(71,131)(72,130)(73,129)(74,128)(75,127)(76,126)(77,125)(78,124)(79,123)(80,122)(81,121)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,114)(89,113)(90,112)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102) );`

`G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201)], [(1,201),(2,200),(3,199),(4,198),(5,197),(6,196),(7,195),(8,194),(9,193),(10,192),(11,191),(12,190),(13,189),(14,188),(15,187),(16,186),(17,185),(18,184),(19,183),(20,182),(21,181),(22,180),(23,179),(24,178),(25,177),(26,176),(27,175),(28,174),(29,173),(30,172),(31,171),(32,170),(33,169),(34,168),(35,167),(36,166),(37,165),(38,164),(39,163),(40,162),(41,161),(42,160),(43,159),(44,158),(45,157),(46,156),(47,155),(48,154),(49,153),(50,152),(51,151),(52,150),(53,149),(54,148),(55,147),(56,146),(57,145),(58,144),(59,143),(60,142),(61,141),(62,140),(63,139),(64,138),(65,137),(66,136),(67,135),(68,134),(69,133),(70,132),(71,131),(72,130),(73,129),(74,128),(75,127),(76,126),(77,125),(78,124),(79,123),(80,122),(81,121),(82,120),(83,119),(84,118),(85,117),(86,116),(87,115),(88,114),(89,113),(90,112),(91,111),(92,110),(93,109),(94,108),(95,107),(96,106),(97,105),(98,104),(99,103),(100,102)]])`

102 conjugacy classes

 class 1 2 3 67A ··· 67AG 201A ··· 201BN order 1 2 3 67 ··· 67 201 ··· 201 size 1 201 2 2 ··· 2 2 ··· 2

102 irreducible representations

 dim 1 1 2 2 2 type + + + + + image C1 C2 S3 D67 D201 kernel D201 C201 C67 C3 C1 # reps 1 1 1 33 66

Matrix representation of D201 in GL2(𝔽1609) generated by

 791 1594 15 1566
,
 791 1594 1487 818
`G:=sub<GL(2,GF(1609))| [791,15,1594,1566],[791,1487,1594,818] >;`

D201 in GAP, Magma, Sage, TeX

`D_{201}`
`% in TeX`

`G:=Group("D201");`
`// GroupNames label`

`G:=SmallGroup(402,5);`
`// by ID`

`G=gap.SmallGroup(402,5);`
`# by ID`

`G:=PCGroup([3,-2,-3,-67,25,3566]);`
`// Polycyclic`

`G:=Group<a,b|a^201=b^2=1,b*a*b=a^-1>;`
`// generators/relations`

Export

׿
×
𝔽