Copied to
clipboard

## G = D202order 404 = 22·101

### Dihedral group

Aliases: D202, C2×D101, C202⋊C2, C101⋊C22, sometimes denoted D404 or Dih202 or Dih404, SmallGroup(404,4)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C101 — D202
 Chief series C1 — C101 — D101 — D202
 Lower central C101 — D202
 Upper central C1 — C2

Generators and relations for D202
G = < a,b | a202=b2=1, bab=a-1 >

101C2
101C2
101C22

Smallest permutation representation of D202
On 202 points
Generators in S202
```(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202)
(1 202)(2 201)(3 200)(4 199)(5 198)(6 197)(7 196)(8 195)(9 194)(10 193)(11 192)(12 191)(13 190)(14 189)(15 188)(16 187)(17 186)(18 185)(19 184)(20 183)(21 182)(22 181)(23 180)(24 179)(25 178)(26 177)(27 176)(28 175)(29 174)(30 173)(31 172)(32 171)(33 170)(34 169)(35 168)(36 167)(37 166)(38 165)(39 164)(40 163)(41 162)(42 161)(43 160)(44 159)(45 158)(46 157)(47 156)(48 155)(49 154)(50 153)(51 152)(52 151)(53 150)(54 149)(55 148)(56 147)(57 146)(58 145)(59 144)(60 143)(61 142)(62 141)(63 140)(64 139)(65 138)(66 137)(67 136)(68 135)(69 134)(70 133)(71 132)(72 131)(73 130)(74 129)(75 128)(76 127)(77 126)(78 125)(79 124)(80 123)(81 122)(82 121)(83 120)(84 119)(85 118)(86 117)(87 116)(88 115)(89 114)(90 113)(91 112)(92 111)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(101 102)```

`G:=sub<Sym(202)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,180)(24,179)(25,178)(26,177)(27,176)(28,175)(29,174)(30,173)(31,172)(32,171)(33,170)(34,169)(35,168)(36,167)(37,166)(38,165)(39,164)(40,163)(41,162)(42,161)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(49,154)(50,153)(51,152)(52,151)(53,150)(54,149)(55,148)(56,147)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,180)(24,179)(25,178)(26,177)(27,176)(28,175)(29,174)(30,173)(31,172)(32,171)(33,170)(34,169)(35,168)(36,167)(37,166)(38,165)(39,164)(40,163)(41,162)(42,161)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(49,154)(50,153)(51,152)(52,151)(53,150)(54,149)(55,148)(56,147)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102) );`

`G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202)], [(1,202),(2,201),(3,200),(4,199),(5,198),(6,197),(7,196),(8,195),(9,194),(10,193),(11,192),(12,191),(13,190),(14,189),(15,188),(16,187),(17,186),(18,185),(19,184),(20,183),(21,182),(22,181),(23,180),(24,179),(25,178),(26,177),(27,176),(28,175),(29,174),(30,173),(31,172),(32,171),(33,170),(34,169),(35,168),(36,167),(37,166),(38,165),(39,164),(40,163),(41,162),(42,161),(43,160),(44,159),(45,158),(46,157),(47,156),(48,155),(49,154),(50,153),(51,152),(52,151),(53,150),(54,149),(55,148),(56,147),(57,146),(58,145),(59,144),(60,143),(61,142),(62,141),(63,140),(64,139),(65,138),(66,137),(67,136),(68,135),(69,134),(70,133),(71,132),(72,131),(73,130),(74,129),(75,128),(76,127),(77,126),(78,125),(79,124),(80,123),(81,122),(82,121),(83,120),(84,119),(85,118),(86,117),(87,116),(88,115),(89,114),(90,113),(91,112),(92,111),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(101,102)])`

104 conjugacy classes

 class 1 2A 2B 2C 101A ··· 101AX 202A ··· 202AX order 1 2 2 2 101 ··· 101 202 ··· 202 size 1 1 101 101 2 ··· 2 2 ··· 2

104 irreducible representations

 dim 1 1 1 2 2 type + + + + + image C1 C2 C2 D101 D202 kernel D202 D101 C202 C2 C1 # reps 1 2 1 50 50

Matrix representation of D202 in GL2(𝔽607) generated by

 219 352 219 0
,
 507 571 126 100
`G:=sub<GL(2,GF(607))| [219,219,352,0],[507,126,571,100] >;`

D202 in GAP, Magma, Sage, TeX

`D_{202}`
`% in TeX`

`G:=Group("D202");`
`// GroupNames label`

`G:=SmallGroup(404,4);`
`// by ID`

`G=gap.SmallGroup(404,4);`
`# by ID`

`G:=PCGroup([3,-2,-2,-101,3602]);`
`// Polycyclic`

`G:=Group<a,b|a^202=b^2=1,b*a*b=a^-1>;`
`// generators/relations`

Export

׿
×
𝔽