direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D202, C2×D101, C202⋊C2, C101⋊C22, sometimes denoted D404 or Dih202 or Dih404, SmallGroup(404,4)
Series: Derived ►Chief ►Lower central ►Upper central
| C101 — D202 |
Generators and relations for D202
G = < a,b | a202=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202)
(1 202)(2 201)(3 200)(4 199)(5 198)(6 197)(7 196)(8 195)(9 194)(10 193)(11 192)(12 191)(13 190)(14 189)(15 188)(16 187)(17 186)(18 185)(19 184)(20 183)(21 182)(22 181)(23 180)(24 179)(25 178)(26 177)(27 176)(28 175)(29 174)(30 173)(31 172)(32 171)(33 170)(34 169)(35 168)(36 167)(37 166)(38 165)(39 164)(40 163)(41 162)(42 161)(43 160)(44 159)(45 158)(46 157)(47 156)(48 155)(49 154)(50 153)(51 152)(52 151)(53 150)(54 149)(55 148)(56 147)(57 146)(58 145)(59 144)(60 143)(61 142)(62 141)(63 140)(64 139)(65 138)(66 137)(67 136)(68 135)(69 134)(70 133)(71 132)(72 131)(73 130)(74 129)(75 128)(76 127)(77 126)(78 125)(79 124)(80 123)(81 122)(82 121)(83 120)(84 119)(85 118)(86 117)(87 116)(88 115)(89 114)(90 113)(91 112)(92 111)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(101 102)
G:=sub<Sym(202)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,180)(24,179)(25,178)(26,177)(27,176)(28,175)(29,174)(30,173)(31,172)(32,171)(33,170)(34,169)(35,168)(36,167)(37,166)(38,165)(39,164)(40,163)(41,162)(42,161)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(49,154)(50,153)(51,152)(52,151)(53,150)(54,149)(55,148)(56,147)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202), (1,202)(2,201)(3,200)(4,199)(5,198)(6,197)(7,196)(8,195)(9,194)(10,193)(11,192)(12,191)(13,190)(14,189)(15,188)(16,187)(17,186)(18,185)(19,184)(20,183)(21,182)(22,181)(23,180)(24,179)(25,178)(26,177)(27,176)(28,175)(29,174)(30,173)(31,172)(32,171)(33,170)(34,169)(35,168)(36,167)(37,166)(38,165)(39,164)(40,163)(41,162)(42,161)(43,160)(44,159)(45,158)(46,157)(47,156)(48,155)(49,154)(50,153)(51,152)(52,151)(53,150)(54,149)(55,148)(56,147)(57,146)(58,145)(59,144)(60,143)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,132)(72,131)(73,130)(74,129)(75,128)(76,127)(77,126)(78,125)(79,124)(80,123)(81,122)(82,121)(83,120)(84,119)(85,118)(86,117)(87,116)(88,115)(89,114)(90,113)(91,112)(92,111)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(101,102) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202)], [(1,202),(2,201),(3,200),(4,199),(5,198),(6,197),(7,196),(8,195),(9,194),(10,193),(11,192),(12,191),(13,190),(14,189),(15,188),(16,187),(17,186),(18,185),(19,184),(20,183),(21,182),(22,181),(23,180),(24,179),(25,178),(26,177),(27,176),(28,175),(29,174),(30,173),(31,172),(32,171),(33,170),(34,169),(35,168),(36,167),(37,166),(38,165),(39,164),(40,163),(41,162),(42,161),(43,160),(44,159),(45,158),(46,157),(47,156),(48,155),(49,154),(50,153),(51,152),(52,151),(53,150),(54,149),(55,148),(56,147),(57,146),(58,145),(59,144),(60,143),(61,142),(62,141),(63,140),(64,139),(65,138),(66,137),(67,136),(68,135),(69,134),(70,133),(71,132),(72,131),(73,130),(74,129),(75,128),(76,127),(77,126),(78,125),(79,124),(80,123),(81,122),(82,121),(83,120),(84,119),(85,118),(86,117),(87,116),(88,115),(89,114),(90,113),(91,112),(92,111),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(101,102)]])
104 conjugacy classes
| class | 1 | 2A | 2B | 2C | 101A | ··· | 101AX | 202A | ··· | 202AX |
| order | 1 | 2 | 2 | 2 | 101 | ··· | 101 | 202 | ··· | 202 |
| size | 1 | 1 | 101 | 101 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | + | + |
| image | C1 | C2 | C2 | D101 | D202 |
| kernel | D202 | D101 | C202 | C2 | C1 |
| # reps | 1 | 2 | 1 | 50 | 50 |
Matrix representation of D202 ►in GL2(𝔽607) generated by
| 219 | 352 |
| 219 | 0 |
| 507 | 571 |
| 126 | 100 |
G:=sub<GL(2,GF(607))| [219,219,352,0],[507,126,571,100] >;
D202 in GAP, Magma, Sage, TeX
D_{202} % in TeX
G:=Group("D202"); // GroupNames label
G:=SmallGroup(404,4);
// by ID
G=gap.SmallGroup(404,4);
# by ID
G:=PCGroup([3,-2,-2,-101,3602]);
// Polycyclic
G:=Group<a,b|a^202=b^2=1,b*a*b=a^-1>;
// generators/relations
Export