Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C52

Direct product G=N×Q with N=C4 and Q=C2×C52
dρLabelID
C2×C4×C52416C2xC4xC52416,175

Semidirect products G=N:Q with N=C4 and Q=C2×C52
extensionφ:Q→Aut NdρLabelID
C41(C2×C52) = D4×C52φ: C2×C52/C52C2 ⊆ Aut C4208C4:1(C2xC52)416,179
C42(C2×C52) = C4⋊C4×C26φ: C2×C52/C2×C26C2 ⊆ Aut C4416C4:2(C2xC52)416,177

Non-split extensions G=N.Q with N=C4 and Q=C2×C52
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C52) = C13×D4⋊C4φ: C2×C52/C52C2 ⊆ Aut C4208C4.1(C2xC52)416,52
C4.2(C2×C52) = C13×Q8⋊C4φ: C2×C52/C52C2 ⊆ Aut C4416C4.2(C2xC52)416,53
C4.3(C2×C52) = C13×C4≀C2φ: C2×C52/C52C2 ⊆ Aut C41042C4.3(C2xC52)416,54
C4.4(C2×C52) = Q8×C52φ: C2×C52/C52C2 ⊆ Aut C4416C4.4(C2xC52)416,180
C4.5(C2×C52) = C13×C8○D4φ: C2×C52/C52C2 ⊆ Aut C42082C4.5(C2xC52)416,192
C4.6(C2×C52) = C13×C4.Q8φ: C2×C52/C2×C26C2 ⊆ Aut C4416C4.6(C2xC52)416,56
C4.7(C2×C52) = C13×C2.D8φ: C2×C52/C2×C26C2 ⊆ Aut C4416C4.7(C2xC52)416,57
C4.8(C2×C52) = C13×C8.C4φ: C2×C52/C2×C26C2 ⊆ Aut C42082C4.8(C2xC52)416,58
C4.9(C2×C52) = C13×C42⋊C2φ: C2×C52/C2×C26C2 ⊆ Aut C4208C4.9(C2xC52)416,178
C4.10(C2×C52) = M4(2)×C26φ: C2×C52/C2×C26C2 ⊆ Aut C4208C4.10(C2xC52)416,191
C4.11(C2×C52) = C13×C8⋊C4central extension (φ=1)416C4.11(C2xC52)416,47
C4.12(C2×C52) = C13×M5(2)central extension (φ=1)2082C4.12(C2xC52)416,60

׿
×
𝔽