Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic13

Direct product G=N×Q with N=C2×C4 and Q=Dic13
dρLabelID
C2×C4×Dic13416C2xC4xDic13416,143

Semidirect products G=N:Q with N=C2×C4 and Q=Dic13
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic13 = C23⋊Dic13φ: Dic13/C13C4 ⊆ Aut C2×C41044(C2xC4):Dic13416,41
(C2×C4)⋊2Dic13 = C26.10C42φ: Dic13/C26C2 ⊆ Aut C2×C4416(C2xC4):2Dic13416,38
(C2×C4)⋊3Dic13 = C2×C523C4φ: Dic13/C26C2 ⊆ Aut C2×C4416(C2xC4):3Dic13416,146
(C2×C4)⋊4Dic13 = C23.21D26φ: Dic13/C26C2 ⊆ Aut C2×C4208(C2xC4):4Dic13416,147

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic13
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic13 = C52.10D4φ: Dic13/C13C4 ⊆ Aut C2×C42084(C2xC4).Dic13416,43
(C2×C4).2Dic13 = C26.7C42φ: Dic13/C26C2 ⊆ Aut C2×C4416(C2xC4).2Dic13416,10
(C2×C4).3Dic13 = C523C8φ: Dic13/C26C2 ⊆ Aut C2×C4416(C2xC4).3Dic13416,11
(C2×C4).4Dic13 = C52.55D4φ: Dic13/C26C2 ⊆ Aut C2×C4208(C2xC4).4Dic13416,37
(C2×C4).5Dic13 = C52.4C8φ: Dic13/C26C2 ⊆ Aut C2×C42082(C2xC4).5Dic13416,19
(C2×C4).6Dic13 = C2×C52.4C4φ: Dic13/C26C2 ⊆ Aut C2×C4208(C2xC4).6Dic13416,142
(C2×C4).7Dic13 = C4×C132C8central extension (φ=1)416(C2xC4).7Dic13416,9
(C2×C4).8Dic13 = C2×C132C16central extension (φ=1)416(C2xC4).8Dic13416,18
(C2×C4).9Dic13 = C22×C132C8central extension (φ=1)416(C2xC4).9Dic13416,141

׿
×
𝔽