extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×D13)⋊1C2 = C4⋊2D52 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):1C2 | 416,116 |
(C2×C4×D13)⋊2C2 = C52⋊2D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):2C2 | 416,159 |
(C2×C4×D13)⋊3C2 = C2×D4×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | | (C2xC4xD13):3C2 | 416,216 |
(C2×C4×D13)⋊4C2 = C2×D4⋊2D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):4C2 | 416,217 |
(C2×C4×D13)⋊5C2 = C2×D52⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):5C2 | 416,220 |
(C2×C4×D13)⋊6C2 = C4○D4×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | 4 | (C2xC4xD13):6C2 | 416,222 |
(C2×C4×D13)⋊7C2 = C4×D52 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):7C2 | 416,94 |
(C2×C4×D13)⋊8C2 = C22⋊C4×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | | (C2xC4xD13):8C2 | 416,101 |
(C2×C4×D13)⋊9C2 = Dic13⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):9C2 | 416,102 |
(C2×C4×D13)⋊10C2 = D26.12D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):10C2 | 416,104 |
(C2×C4×D13)⋊11C2 = D26⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):11C2 | 416,105 |
(C2×C4×D13)⋊12C2 = D52⋊8C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):12C2 | 416,114 |
(C2×C4×D13)⋊13C2 = D26.13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):13C2 | 416,115 |
(C2×C4×D13)⋊14C2 = C4×C13⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):14C2 | 416,149 |
(C2×C4×D13)⋊15C2 = C2×D52⋊5C2 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13):15C2 | 416,215 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4×D13).1C2 = C4⋊C4×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).1C2 | 416,112 |
(C2×C4×D13).2C2 = C4⋊C4⋊7D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).2C2 | 416,113 |
(C2×C4×D13).3C2 = D26⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).3C2 | 416,118 |
(C2×C4×D13).4C2 = M4(2)×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | 4 | (C2xC4xD13).4C2 | 416,127 |
(C2×C4×D13).5C2 = D26⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).5C2 | 416,167 |
(C2×C4×D13).6C2 = C2×Q8×D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).6C2 | 416,219 |
(C2×C4×D13).7C2 = D26⋊1C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).7C2 | 416,27 |
(C2×C4×D13).8C2 = D26⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).8C2 | 416,78 |
(C2×C4×D13).9C2 = D26.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | | (C2xC4xD13).9C2 | 416,81 |
(C2×C4×D13).10C2 = C42⋊D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).10C2 | 416,93 |
(C2×C4×D13).11C2 = D26⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).11C2 | 416,117 |
(C2×C4×D13).12C2 = C2×C8⋊D13 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).12C2 | 416,121 |
(C2×C4×D13).13C2 = C2×C52.C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).13C2 | 416,200 |
(C2×C4×D13).14C2 = C2×C52⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | | (C2xC4xD13).14C2 | 416,203 |
(C2×C4×D13).15C2 = D13⋊M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | 4 | (C2xC4xD13).15C2 | 416,201 |
(C2×C4×D13).16C2 = D26.C23 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | 4 | (C2xC4xD13).16C2 | 416,204 |
(C2×C4×D13).17C2 = C2×D13⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 208 | | (C2xC4xD13).17C2 | 416,199 |
(C2×C4×D13).18C2 = C2×C4×C13⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4×D13 | 104 | | (C2xC4xD13).18C2 | 416,202 |
(C2×C4×D13).19C2 = C42×D13 | φ: trivial image | 208 | | (C2xC4xD13).19C2 | 416,92 |
(C2×C4×D13).20C2 = C2×C8×D13 | φ: trivial image | 208 | | (C2xC4xD13).20C2 | 416,120 |