# Extensions 1→N→G→Q→1 with N=C4×D13 and Q=C4

Direct product G=N×Q with N=C4×D13 and Q=C4
dρLabelID
C42×D13208C4^2xD13416,92

Semidirect products G=N:Q with N=C4×D13 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D13)⋊1C4 = C4⋊C4×D13φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13):1C4416,112
(C4×D13)⋊2C4 = C4⋊C47D13φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13):2C4416,113
(C4×D13)⋊3C4 = C42⋊D13φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13):3C4416,93
(C4×D13)⋊4C4 = C2×C52⋊C4φ: C4/C2C2 ⊆ Out C4×D13104(C4xD13):4C4416,203
(C4×D13)⋊5C4 = C2×C4×C13⋊C4φ: C4/C2C2 ⊆ Out C4×D13104(C4xD13):5C4416,202
(C4×D13)⋊6C4 = D26.C23φ: C4/C2C2 ⊆ Out C4×D131044(C4xD13):6C4416,204

Non-split extensions G=N.Q with N=C4×D13 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D13).1C4 = M4(2)×D13φ: C4/C2C2 ⊆ Out C4×D131044(C4xD13).1C4416,127
(C4×D13).2C4 = C208⋊C2φ: C4/C2C2 ⊆ Out C4×D132082(C4xD13).2C4416,5
(C4×D13).3C4 = C2×C8⋊D13φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13).3C4416,121
(C4×D13).4C4 = C2×C52.C4φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13).4C4416,200
(C4×D13).5C4 = D13⋊C16φ: C4/C2C2 ⊆ Out C4×D132084(C4xD13).5C4416,64
(C4×D13).6C4 = D26.C8φ: C4/C2C2 ⊆ Out C4×D132084(C4xD13).6C4416,65
(C4×D13).7C4 = C2×D13⋊C8φ: C4/C2C2 ⊆ Out C4×D13208(C4xD13).7C4416,199
(C4×D13).8C4 = D13⋊M4(2)φ: C4/C2C2 ⊆ Out C4×D131044(C4xD13).8C4416,201
(C4×D13).9C4 = C16×D13φ: trivial image2082(C4xD13).9C4416,4
(C4×D13).10C4 = C2×C8×D13φ: trivial image208(C4xD13).10C4416,120

׿
×
𝔽