direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C4×D13, C52⋊2C2, C4○Dic13, C2.1D26, D26.2C2, Dic13⋊2C2, C26.2C22, C13⋊2(C2×C4), SmallGroup(104,5)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C4×D13 |
Generators and relations for C4×D13
G = < a,b,c | a4=b13=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 44 16 33)(2 45 17 34)(3 46 18 35)(4 47 19 36)(5 48 20 37)(6 49 21 38)(7 50 22 39)(8 51 23 27)(9 52 24 28)(10 40 25 29)(11 41 26 30)(12 42 14 31)(13 43 15 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 17)(15 16)(18 26)(19 25)(20 24)(21 23)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(40 47)(41 46)(42 45)(43 44)(48 52)(49 51)
G:=sub<Sym(52)| (1,44,16,33)(2,45,17,34)(3,46,18,35)(4,47,19,36)(5,48,20,37)(6,49,21,38)(7,50,22,39)(8,51,23,27)(9,52,24,28)(10,40,25,29)(11,41,26,30)(12,42,14,31)(13,43,15,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,47)(41,46)(42,45)(43,44)(48,52)(49,51)>;
G:=Group( (1,44,16,33)(2,45,17,34)(3,46,18,35)(4,47,19,36)(5,48,20,37)(6,49,21,38)(7,50,22,39)(8,51,23,27)(9,52,24,28)(10,40,25,29)(11,41,26,30)(12,42,14,31)(13,43,15,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,47)(41,46)(42,45)(43,44)(48,52)(49,51) );
G=PermutationGroup([[(1,44,16,33),(2,45,17,34),(3,46,18,35),(4,47,19,36),(5,48,20,37),(6,49,21,38),(7,50,22,39),(8,51,23,27),(9,52,24,28),(10,40,25,29),(11,41,26,30),(12,42,14,31),(13,43,15,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,17),(15,16),(18,26),(19,25),(20,24),(21,23),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(40,47),(41,46),(42,45),(43,44),(48,52),(49,51)]])
C4×D13 is a maximal subgroup of
C8⋊D13 D13⋊C8 C52.C4 C52⋊C4 D52⋊5C2 D4⋊2D13 D52⋊C2 D78.C2
C4×D13 is a maximal quotient of
C8⋊D13 C26.D4 D26⋊C4 D78.C2
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 13A | ··· | 13F | 26A | ··· | 26F | 52A | ··· | 52L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 13 | 13 | 1 | 1 | 13 | 13 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C4 | D13 | D26 | C4×D13 |
kernel | C4×D13 | Dic13 | C52 | D26 | D13 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 6 | 6 | 12 |
Matrix representation of C4×D13 ►in GL3(𝔽53) generated by
30 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 52 | 8 |
52 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(53))| [30,0,0,0,1,0,0,0,1],[1,0,0,0,0,52,0,1,8],[52,0,0,0,0,1,0,1,0] >;
C4×D13 in GAP, Magma, Sage, TeX
C_4\times D_{13}
% in TeX
G:=Group("C4xD13");
// GroupNames label
G:=SmallGroup(104,5);
// by ID
G=gap.SmallGroup(104,5);
# by ID
G:=PCGroup([4,-2,-2,-2,-13,21,1539]);
// Polycyclic
G:=Group<a,b,c|a^4=b^13=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export