Copied to
clipboard

G = C4xD13order 104 = 23·13

Direct product of C4 and D13

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xD13, C52:2C2, C4oDic13, C2.1D26, D26.2C2, Dic13:2C2, C26.2C22, C13:2(C2xC4), SmallGroup(104,5)

Series: Derived Chief Lower central Upper central

C1C13 — C4xD13
C1C13C26D26 — C4xD13
C13 — C4xD13
C1C4

Generators and relations for C4xD13
 G = < a,b,c | a4=b13=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 76 in 16 conjugacy classes, 11 normal (9 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D13, D26, C4xD13
13C2
13C2
13C22
13C4
13C2xC4

Smallest permutation representation of C4xD13
On 52 points
Generators in S52
(1 44 16 33)(2 45 17 34)(3 46 18 35)(4 47 19 36)(5 48 20 37)(6 49 21 38)(7 50 22 39)(8 51 23 27)(9 52 24 28)(10 40 25 29)(11 41 26 30)(12 42 14 31)(13 43 15 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 17)(15 16)(18 26)(19 25)(20 24)(21 23)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(40 47)(41 46)(42 45)(43 44)(48 52)(49 51)

G:=sub<Sym(52)| (1,44,16,33)(2,45,17,34)(3,46,18,35)(4,47,19,36)(5,48,20,37)(6,49,21,38)(7,50,22,39)(8,51,23,27)(9,52,24,28)(10,40,25,29)(11,41,26,30)(12,42,14,31)(13,43,15,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,47)(41,46)(42,45)(43,44)(48,52)(49,51)>;

G:=Group( (1,44,16,33)(2,45,17,34)(3,46,18,35)(4,47,19,36)(5,48,20,37)(6,49,21,38)(7,50,22,39)(8,51,23,27)(9,52,24,28)(10,40,25,29)(11,41,26,30)(12,42,14,31)(13,43,15,32), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(40,47)(41,46)(42,45)(43,44)(48,52)(49,51) );

G=PermutationGroup([[(1,44,16,33),(2,45,17,34),(3,46,18,35),(4,47,19,36),(5,48,20,37),(6,49,21,38),(7,50,22,39),(8,51,23,27),(9,52,24,28),(10,40,25,29),(11,41,26,30),(12,42,14,31),(13,43,15,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,17),(15,16),(18,26),(19,25),(20,24),(21,23),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(40,47),(41,46),(42,45),(43,44),(48,52),(49,51)]])

C4xD13 is a maximal subgroup of
C8:D13  D13:C8  C52.C4  C52:C4  D52:5C2  D4:2D13  D52:C2  D78.C2
C4xD13 is a maximal quotient of
C8:D13  C26.D4  D26:C4  D78.C2

32 conjugacy classes

class 1 2A2B2C4A4B4C4D13A···13F26A···26F52A···52L
order1222444413···1326···2652···52
size1113131113132···22···22···2

32 irreducible representations

dim11111222
type++++++
imageC1C2C2C2C4D13D26C4xD13
kernelC4xD13Dic13C52D26D13C4C2C1
# reps111146612

Matrix representation of C4xD13 in GL3(F53) generated by

3000
010
001
,
100
001
0528
,
5200
001
010
G:=sub<GL(3,GF(53))| [30,0,0,0,1,0,0,0,1],[1,0,0,0,0,52,0,1,8],[52,0,0,0,0,1,0,1,0] >;

C4xD13 in GAP, Magma, Sage, TeX

C_4\times D_{13}
% in TeX

G:=Group("C4xD13");
// GroupNames label

G:=SmallGroup(104,5);
// by ID

G=gap.SmallGroup(104,5);
# by ID

G:=PCGroup([4,-2,-2,-2,-13,21,1539]);
// Polycyclic

G:=Group<a,b,c|a^4=b^13=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xD13 in TeX

׿
x
:
Z
F
o
wr
Q
<