extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C4×D13) = D52⋊6C4 | φ: C4×D13/Dic13 → C2 ⊆ Aut C4 | 208 | | C4.1(C4xD13) | 416,16 |
C4.2(C4×D13) = C26.Q16 | φ: C4×D13/Dic13 → C2 ⊆ Aut C4 | 416 | | C4.2(C4xD13) | 416,17 |
C4.3(C4×D13) = D52⋊7C4 | φ: C4×D13/Dic13 → C2 ⊆ Aut C4 | 104 | 4 | C4.3(C4xD13) | 416,32 |
C4.4(C4×D13) = Dic13⋊3Q8 | φ: C4×D13/Dic13 → C2 ⊆ Aut C4 | 416 | | C4.4(C4xD13) | 416,108 |
C4.5(C4×D13) = D52.2C4 | φ: C4×D13/Dic13 → C2 ⊆ Aut C4 | 208 | 4 | C4.5(C4xD13) | 416,128 |
C4.6(C4×D13) = D52⋊4C4 | φ: C4×D13/C52 → C2 ⊆ Aut C4 | 104 | 2 | C4.6(C4xD13) | 416,12 |
C4.7(C4×D13) = C52.44D4 | φ: C4×D13/C52 → C2 ⊆ Aut C4 | 416 | | C4.7(C4xD13) | 416,23 |
C4.8(C4×D13) = D52⋊5C4 | φ: C4×D13/C52 → C2 ⊆ Aut C4 | 208 | | C4.8(C4xD13) | 416,28 |
C4.9(C4×D13) = C4×Dic26 | φ: C4×D13/C52 → C2 ⊆ Aut C4 | 416 | | C4.9(C4xD13) | 416,89 |
C4.10(C4×D13) = D52.3C4 | φ: C4×D13/C52 → C2 ⊆ Aut C4 | 208 | 2 | C4.10(C4xD13) | 416,122 |
C4.11(C4×D13) = C26.D8 | φ: C4×D13/D26 → C2 ⊆ Aut C4 | 416 | | C4.11(C4xD13) | 416,14 |
C4.12(C4×D13) = C52.Q8 | φ: C4×D13/D26 → C2 ⊆ Aut C4 | 416 | | C4.12(C4xD13) | 416,15 |
C4.13(C4×D13) = C52.53D4 | φ: C4×D13/D26 → C2 ⊆ Aut C4 | 208 | 4 | C4.13(C4xD13) | 416,29 |
C4.14(C4×D13) = C4⋊C4⋊7D13 | φ: C4×D13/D26 → C2 ⊆ Aut C4 | 208 | | C4.14(C4xD13) | 416,113 |
C4.15(C4×D13) = M4(2)×D13 | φ: C4×D13/D26 → C2 ⊆ Aut C4 | 104 | 4 | C4.15(C4xD13) | 416,127 |
C4.16(C4×D13) = C16×D13 | central extension (φ=1) | 208 | 2 | C4.16(C4xD13) | 416,4 |
C4.17(C4×D13) = C208⋊C2 | central extension (φ=1) | 208 | 2 | C4.17(C4xD13) | 416,5 |
C4.18(C4×D13) = C4×C13⋊2C8 | central extension (φ=1) | 416 | | C4.18(C4xD13) | 416,9 |
C4.19(C4×D13) = C26.7C42 | central extension (φ=1) | 416 | | C4.19(C4xD13) | 416,10 |
C4.20(C4×D13) = C8×Dic13 | central extension (φ=1) | 416 | | C4.20(C4xD13) | 416,20 |
C4.21(C4×D13) = C104⋊8C4 | central extension (φ=1) | 416 | | C4.21(C4xD13) | 416,22 |
C4.22(C4×D13) = C42⋊D13 | central extension (φ=1) | 208 | | C4.22(C4xD13) | 416,93 |
C4.23(C4×D13) = C2×C8×D13 | central extension (φ=1) | 208 | | C4.23(C4xD13) | 416,120 |
C4.24(C4×D13) = C2×C8⋊D13 | central extension (φ=1) | 208 | | C4.24(C4xD13) | 416,121 |