# Extensions 1→N→G→Q→1 with N=D4×C9 and Q=S3

Direct product G=N×Q with N=D4×C9 and Q=S3
dρLabelID
S3×D4×C9724S3xD4xC9432,358

Semidirect products G=N:Q with N=D4×C9 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4×C9)⋊1S3 = C36.18D6φ: S3/C3C2 ⊆ Out D4×C9216(D4xC9):1S3432,191
(D4×C9)⋊2S3 = D4×C9⋊S3φ: S3/C3C2 ⊆ Out D4×C9108(D4xC9):2S3432,388
(D4×C9)⋊3S3 = C36.27D6φ: S3/C3C2 ⊆ Out D4×C9216(D4xC9):3S3432,389
(D4×C9)⋊4S3 = C9×D4⋊S3φ: S3/C3C2 ⊆ Out D4×C9724(D4xC9):4S3432,150
(D4×C9)⋊5S3 = C9×D42S3φ: trivial image724(D4xC9):5S3432,359

Non-split extensions G=N.Q with N=D4×C9 and Q=S3
extensionφ:Q→Out NdρLabelID
(D4×C9).1S3 = D4.D27φ: S3/C3C2 ⊆ Out D4×C92164-(D4xC9).1S3432,15
(D4×C9).2S3 = D4⋊D27φ: S3/C3C2 ⊆ Out D4×C92164+(D4xC9).2S3432,16
(D4×C9).3S3 = D4×D27φ: S3/C3C2 ⊆ Out D4×C91084+(D4xC9).3S3432,47
(D4×C9).4S3 = D42D27φ: S3/C3C2 ⊆ Out D4×C92164-(D4xC9).4S3432,48
(D4×C9).5S3 = C36.17D6φ: S3/C3C2 ⊆ Out D4×C9216(D4xC9).5S3432,190
(D4×C9).6S3 = C9×D4.S3φ: S3/C3C2 ⊆ Out D4×C9724(D4xC9).6S3432,151

׿
×
𝔽