Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C3:D4

Direct product G=NxQ with N=C3:S3 and Q=C3:D4
dρLabelID
C3:S3xC3:D472C3:S3xC3:D4432,685

Semidirect products G=N:Q with N=C3:S3 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
C3:S3:(C3:D4) = C62:D6φ: C3:D4/C22S3 ⊆ Out C3:S33612+C3:S3:(C3:D4)432,323
C3:S3:2(C3:D4) = C2xC33:D4φ: C3:D4/C6C22 ⊆ Out C3:S3244C3:S3:2(C3:D4)432,755
C3:S3:3(C3:D4) = D6:S32φ: C3:D4/Dic3C2 ⊆ Out C3:S3488-C3:S3:3(C3:D4)432,600
C3:S3:4(C3:D4) = D6:4S32φ: C3:D4/D6C2 ⊆ Out C3:S3248+C3:S3:4(C3:D4)432,599
C3:S3:5(C3:D4) = C62:24D6φ: C3:D4/C2xC6C2 ⊆ Out C3:S3244C3:S3:5(C3:D4)432,696

Non-split extensions G=N.Q with N=C3:S3 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
C3:S3.1(C3:D4) = C33:SD16φ: C3:D4/C3D4 ⊆ Out C3:S3248C3:S3.1(C3:D4)432,738
C3:S3.2(C3:D4) = C33:3SD16φ: C3:D4/C3D4 ⊆ Out C3:S32416+C3:S3.2(C3:D4)432,739
C3:S3.3(C3:D4) = S32:Dic3φ: C3:D4/C6C22 ⊆ Out C3:S3244C3:S3.3(C3:D4)432,580
C3:S3.4(C3:D4) = (C3xC6).8D12φ: C3:D4/C6C22 ⊆ Out C3:S3248+C3:S3.4(C3:D4)432,586
C3:S3.5(C3:D4) = C6.PSU3(F2)φ: C3:D4/C6C22 ⊆ Out C3:S3488C3:S3.5(C3:D4)432,592
C3:S3.6(C3:D4) = C33:(C4:C4)φ: C3:D4/Dic3C2 ⊆ Out C3:S3488-C3:S3.6(C3:D4)432,569
C3:S3.7(C3:D4) = D6:(C32:C4)φ: C3:D4/D6C2 ⊆ Out C3:S3248+C3:S3.7(C3:D4)432,568
C3:S3.8(C3:D4) = C62:11Dic3φ: C3:D4/C2xC6C2 ⊆ Out C3:S3244C3:S3.8(C3:D4)432,641

׿
x
:
Z
F
o
wr
Q
<