# Extensions 1→N→G→Q→1 with N=D4×C9 and Q=C6

Direct product G=N×Q with N=D4×C9 and Q=C6
dρLabelID
D4×C3×C18216D4xC3xC18432,403

Semidirect products G=N:Q with N=D4×C9 and Q=C6
extensionφ:Q→Out NdρLabelID
(D4×C9)⋊1C6 = D36⋊C6φ: C6/C1C6 ⊆ Out D4×C97212+(D4xC9):1C6432,155
(D4×C9)⋊2C6 = D4×C9⋊C6φ: C6/C1C6 ⊆ Out D4×C93612+(D4xC9):2C6432,362
(D4×C9)⋊3C6 = Dic182C6φ: C6/C1C6 ⊆ Out D4×C97212-(D4xC9):3C6432,363
(D4×C9)⋊4C6 = D8×3- 1+2φ: C6/C1C6 ⊆ Out D4×C9726(D4xC9):4C6432,217
(D4×C9)⋊5C6 = C2×D4×3- 1+2φ: C6/C2C3 ⊆ Out D4×C972(D4xC9):5C6432,405
(D4×C9)⋊6C6 = C4○D4×3- 1+2φ: C6/C2C3 ⊆ Out D4×C9726(D4xC9):6C6432,411
(D4×C9)⋊7C6 = C3×D4⋊D9φ: C6/C3C2 ⊆ Out D4×C9724(D4xC9):7C6432,149
(D4×C9)⋊8C6 = C3×D4×D9φ: C6/C3C2 ⊆ Out D4×C9724(D4xC9):8C6432,356
(D4×C9)⋊9C6 = C3×D42D9φ: C6/C3C2 ⊆ Out D4×C9724(D4xC9):9C6432,357
(D4×C9)⋊10C6 = D8×C3×C9φ: C6/C3C2 ⊆ Out D4×C9216(D4xC9):10C6432,215
(D4×C9)⋊11C6 = C4○D4×C3×C9φ: trivial image216(D4xC9):11C6432,409

Non-split extensions G=N.Q with N=D4×C9 and Q=C6
extensionφ:Q→Out NdρLabelID
(D4×C9).1C6 = Dic18⋊C6φ: C6/C1C6 ⊆ Out D4×C97212-(D4xC9).1C6432,154
(D4×C9).2C6 = SD16×3- 1+2φ: C6/C1C6 ⊆ Out D4×C9726(D4xC9).2C6432,220
(D4×C9).3C6 = C3×D4.D9φ: C6/C3C2 ⊆ Out D4×C9724(D4xC9).3C6432,148
(D4×C9).4C6 = D8×C27φ: C6/C3C2 ⊆ Out D4×C92162(D4xC9).4C6432,25
(D4×C9).5C6 = SD16×C27φ: C6/C3C2 ⊆ Out D4×C92162(D4xC9).5C6432,26
(D4×C9).6C6 = SD16×C3×C9φ: C6/C3C2 ⊆ Out D4×C9216(D4xC9).6C6432,218
(D4×C9).7C6 = D4×C54φ: trivial image216(D4xC9).7C6432,54
(D4×C9).8C6 = C4○D4×C27φ: trivial image2162(D4xC9).8C6432,56

׿
×
𝔽