Extensions 1→N→G→Q→1 with N=Dic3 and Q=S3xC6

Direct product G=NxQ with N=Dic3 and Q=S3xC6
dρLabelID
S3xC6xDic348S3xC6xDic3432,651

Semidirect products G=N:Q with N=Dic3 and Q=S3xC6
extensionφ:Q→Out NdρLabelID
Dic3:1(S3xC6) = C3xS3xC3:D4φ: S3xC6/C3xS3C2 ⊆ Out Dic3244Dic3:1(S3xC6)432,658
Dic3:2(S3xC6) = C3xDic3:D6φ: S3xC6/C3xS3C2 ⊆ Out Dic3244Dic3:2(S3xC6)432,659
Dic3:3(S3xC6) = C3xS3xD12φ: S3xC6/C3xC6C2 ⊆ Out Dic3484Dic3:3(S3xC6)432,649
Dic3:4(S3xC6) = C6xC3:D12φ: S3xC6/C3xC6C2 ⊆ Out Dic348Dic3:4(S3xC6)432,656
Dic3:5(S3xC6) = S32xC12φ: trivial image484Dic3:5(S3xC6)432,648
Dic3:6(S3xC6) = C6xC6.D6φ: trivial image48Dic3:6(S3xC6)432,654

Non-split extensions G=N.Q with N=Dic3 and Q=S3xC6
extensionφ:Q→Out NdρLabelID
Dic3.1(S3xC6) = C3xD12:S3φ: S3xC6/C3xS3C2 ⊆ Out Dic3484Dic3.1(S3xC6)432,644
Dic3.2(S3xC6) = C3xDic3.D6φ: S3xC6/C3xS3C2 ⊆ Out Dic3484Dic3.2(S3xC6)432,645
Dic3.3(S3xC6) = C3xD6.3D6φ: S3xC6/C3xS3C2 ⊆ Out Dic3244Dic3.3(S3xC6)432,652
Dic3.4(S3xC6) = C3xD6.4D6φ: S3xC6/C3xS3C2 ⊆ Out Dic3244Dic3.4(S3xC6)432,653
Dic3.5(S3xC6) = C3xS3xDic6φ: S3xC6/C3xC6C2 ⊆ Out Dic3484Dic3.5(S3xC6)432,642
Dic3.6(S3xC6) = C3xD6.D6φ: S3xC6/C3xC6C2 ⊆ Out Dic3484Dic3.6(S3xC6)432,646
Dic3.7(S3xC6) = C6xC32:2Q8φ: S3xC6/C3xC6C2 ⊆ Out Dic348Dic3.7(S3xC6)432,657
Dic3.8(S3xC6) = C3xD12:5S3φ: trivial image484Dic3.8(S3xC6)432,643
Dic3.9(S3xC6) = C3xD6.6D6φ: trivial image484Dic3.9(S3xC6)432,647

׿
x
:
Z
F
o
wr
Q
<