Copied to
clipboard

G = C3xS3xDic6order 432 = 24·33

Direct product of C3, S3 and Dic6

direct product, metabelian, supersoluble, monomial

Aliases: C3xS3xDic6, C12.78S32, C33:7(C2xQ8), D6.7(S3xC6), C3:1(C6xDic6), (S3xDic3).C6, C32:4(C6xQ8), (S3xC12).8S3, (S3xC12).6C6, C12.42(S3xC6), (C3xDic6):4C6, (S3xC6).46D6, C32:2Q8:2C6, (S3xC32):3Q8, C32:13(S3xQ8), (C3xC12).176D6, Dic3.5(S3xC6), C32:4Q8:10C6, (C3xDic3).45D6, (C32xDic6):6C2, C32:12(C2xDic6), (C32xC6).20C23, (C32xC12).35C22, (C32xDic3).8C22, C3:2(C3xS3xQ8), C2.4(S32xC6), C4.5(C3xS32), (C3xS3):(C3xQ8), C6.1(S3xC2xC6), C6.104(C2xS32), (S3xC3xC12).3C2, (C4xS3).1(C3xS3), (C3xS3xDic3).2C2, (S3xC6).11(C2xC6), (C3xC12).50(C2xC6), (C3xC32:2Q8):8C2, (S3xC3xC6).18C22, C3:Dic3.8(C2xC6), (C3xC32:4Q8):6C2, (C3xC6).11(C22xC6), (C3xDic3).1(C2xC6), (C3xC6).125(C22xS3), (C3xC3:Dic3).34C22, SmallGroup(432,642)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xS3xDic6
C1C3C32C3xC6C32xC6S3xC3xC6C3xS3xDic3 — C3xS3xDic6
C32C3xC6 — C3xS3xDic6
C1C6C12

Generators and relations for C3xS3xDic6
 G = < a,b,c,d,e | a3=b3=c2=d12=1, e2=d6, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 568 in 198 conjugacy classes, 72 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, Q8, C32, C32, Dic3, Dic3, Dic3, C12, C12, D6, C2xC6, C2xQ8, C3xS3, C3xS3, C3xC6, C3xC6, Dic6, Dic6, C4xS3, C4xS3, C2xDic3, C2xC12, C3xQ8, C33, C3xDic3, C3xDic3, C3xDic3, C3:Dic3, C3xC12, C3xC12, S3xC6, S3xC6, C62, C2xDic6, S3xQ8, C6xQ8, S3xC32, C32xC6, S3xDic3, C32:2Q8, C3xDic6, C3xDic6, S3xC12, S3xC12, C6xDic3, C32:4Q8, C6xC12, Q8xC32, C32xDic3, C32xDic3, C3xC3:Dic3, C32xC12, S3xC3xC6, S3xDic6, C6xDic6, C3xS3xQ8, C3xS3xDic3, C3xC32:2Q8, C32xDic6, S3xC3xC12, C3xC32:4Q8, C3xS3xDic6
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, D6, C2xC6, C2xQ8, C3xS3, Dic6, C3xQ8, C22xS3, C22xC6, S32, S3xC6, C2xDic6, S3xQ8, C6xQ8, C3xDic6, C2xS32, S3xC2xC6, C3xS32, S3xDic6, C6xDic6, C3xS3xQ8, S32xC6, C3xS3xDic6

Smallest permutation representation of C3xS3xDic6
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 25)(11 26)(12 27)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 7 22)(2 15 8 21)(3 14 9 20)(4 13 10 19)(5 24 11 18)(6 23 12 17)(25 43 31 37)(26 42 32 48)(27 41 33 47)(28 40 34 46)(29 39 35 45)(30 38 36 44)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22)(2,15,8,21)(3,14,9,20)(4,13,10,19)(5,24,11,18)(6,23,12,17)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,25)(11,26)(12,27)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22)(2,15,8,21)(3,14,9,20)(4,13,10,19)(5,24,11,18)(6,23,12,17)(25,43,31,37)(26,42,32,48)(27,41,33,47)(28,40,34,46)(29,39,35,45)(30,38,36,44) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,25),(11,26),(12,27),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,7,22),(2,15,8,21),(3,14,9,20),(4,13,10,19),(5,24,11,18),(6,23,12,17),(25,43,31,37),(26,42,32,48),(27,41,33,47),(28,40,34,46),(29,39,35,45),(30,38,36,44)]])

81 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K4A4B4C4D4E4F6A6B6C···6H6I6J6K6L6M6N6O6P···6U12A···12H12I···12Q12R···12AC12AD···12AI12AJ12AK12AL12AM
order1222333···3333444444666···666666666···612···1212···1212···1212···1212121212
size1133112···244426661818112···233334446···62···24···46···612···1218181818

81 irreducible representations

dim1111111111112222222222222244444444
type++++++++-+++-+-+-
imageC1C2C2C2C2C2C3C6C6C6C6C6S3S3Q8D6D6D6C3xS3C3xS3Dic6C3xQ8S3xC6S3xC6S3xC6C3xDic6S32S3xQ8C2xS32C3xS32S3xDic6C3xS3xQ8S32xC6C3xS3xDic6
kernelC3xS3xDic6C3xS3xDic3C3xC32:2Q8C32xDic6S3xC3xC12C3xC32:4Q8S3xDic6S3xDic3C32:2Q8C3xDic6S3xC12C32:4Q8C3xDic6S3xC12S3xC32C3xDic3C3xC12S3xC6Dic6C4xS3C3xS3C3xS3Dic3C12D6S3C12C32C6C4C3C3C2C1
# reps1221112442221123212244642811122224

Matrix representation of C3xS3xDic6 in GL6(F13)

300000
030000
009000
000900
000010
000001
,
100000
010000
0012100
0012000
000010
000001
,
100000
010000
0011200
0001200
000010
000001
,
010000
1200000
001000
000100
00001212
000010
,
1040000
430000
0012000
0001200
000010
00001212

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[10,4,0,0,0,0,4,3,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

C3xS3xDic6 in GAP, Magma, Sage, TeX

C_3\times S_3\times {\rm Dic}_6
% in TeX

G:=Group("C3xS3xDic6");
// GroupNames label

G:=SmallGroup(432,642);
// by ID

G=gap.SmallGroup(432,642);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,303,142,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^12=1,e^2=d^6,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<