direct product, metabelian, supersoluble, monomial
Aliases: C3×S3×D12, C12⋊6S32, C12⋊3(S3×C6), D6⋊1(S3×C6), C3⋊1(C6×D12), (S3×C12)⋊4C6, (S3×C12)⋊4S3, (S3×C6)⋊11D6, (C3×D12)⋊6C6, (C3×C12)⋊19D6, C32⋊5(C6×D4), C33⋊11(C2×D4), C3⋊D12⋊1C6, Dic3⋊3(S3×C6), (S3×C32)⋊4D4, C12⋊S3⋊11C6, C32⋊20(S3×D4), (C3×Dic3)⋊17D6, (C32×D12)⋊8C2, C32⋊12(C2×D12), (C32×C12)⋊1C22, (C32×C6).27C23, (C32×Dic3)⋊14C22, C4⋊1(C3×S32), C3⋊1(C3×S3×D4), (C2×S32)⋊1C6, (S32×C6)⋊5C2, C6.8(S3×C2×C6), (S3×C3×C12)⋊5C2, C2.10(S32×C6), (C4×S3)⋊3(C3×S3), (S3×C6)⋊1(C2×C6), C6.111(C2×S32), (C3×C12)⋊5(C2×C6), (C3×S3)⋊1(C3×D4), (S3×C3×C6)⋊7C22, (C6×C3⋊S3)⋊6C22, (C3×C12⋊S3)⋊7C2, (C3×Dic3)⋊3(C2×C6), (C3×C3⋊D12)⋊13C2, (C3×C6).18(C22×C6), (C3×C6).132(C22×S3), (C2×C3⋊S3)⋊4(C2×C6), SmallGroup(432,649)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×S3×D12
G = < a,b,c,d,e | a3=b3=c2=d12=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1096 in 270 conjugacy classes, 72 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C2×C4, D4, C23, C32, C32, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C33, C3×Dic3, C3×Dic3, C3×C12, C3×C12, S32, S3×C6, S3×C6, S3×C6, C2×C3⋊S3, C62, C2×D12, S3×D4, C6×D4, S3×C32, S3×C32, C3×C3⋊S3, C32×C6, C3⋊D12, S3×C12, S3×C12, C3×D12, C3×D12, C3×C3⋊D4, C12⋊S3, C6×C12, D4×C32, C2×S32, S3×C2×C6, C32×Dic3, C32×C12, C3×S32, S3×C3×C6, S3×C3×C6, C6×C3⋊S3, S3×D12, C6×D12, C3×S3×D4, C3×C3⋊D12, S3×C3×C12, C32×D12, C3×C12⋊S3, S32×C6, C3×S3×D12
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, D12, C3×D4, C22×S3, C22×C6, S32, S3×C6, C2×D12, S3×D4, C6×D4, C3×D12, C2×S32, S3×C2×C6, C3×S32, S3×D12, C6×D12, C3×S3×D4, S32×C6, C3×S3×D12
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 41 45)(38 42 46)(39 43 47)(40 44 48)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 25)(13 40)(14 41)(15 42)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 37)(23 38)(24 39)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 48)(36 47)
G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,41,45)(38,42,46)(39,43,47)(40,44,48), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,26)(2,27)(3,28)(4,29)(5,30)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,25)(13,40)(14,41)(15,42)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,37)(23,38)(24,39), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,41,45),(38,42,46),(39,43,47),(40,44,48)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,25),(13,40),(14,41),(15,42),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,37),(23,38),(24,39)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,48),(36,47)]])
81 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 6P | ··· | 6Y | 6Z | ··· | 6AE | 6AF | 6AG | 6AH | 6AI | 12A | ··· | 12H | 12I | ··· | 12Q | 12R | ··· | 12Y |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 3 | 3 | 6 | 6 | 18 | 18 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 6 | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 12 | ··· | 12 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | S3 | D4 | D6 | D6 | D6 | C3×S3 | C3×S3 | D12 | C3×D4 | S3×C6 | S3×C6 | S3×C6 | C3×D12 | S32 | S3×D4 | C2×S32 | C3×S32 | S3×D12 | C3×S3×D4 | S32×C6 | C3×S3×D12 |
kernel | C3×S3×D12 | C3×C3⋊D12 | S3×C3×C12 | C32×D12 | C3×C12⋊S3 | S32×C6 | S3×D12 | C3⋊D12 | S3×C12 | C3×D12 | C12⋊S3 | C2×S32 | S3×C12 | C3×D12 | S3×C32 | C3×Dic3 | C3×C12 | S3×C6 | C4×S3 | D12 | C3×S3 | C3×S3 | Dic3 | C12 | D6 | S3 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 2 | 4 | 4 | 2 | 4 | 6 | 8 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C3×S3×D12 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,1] >;
C3×S3×D12 in GAP, Magma, Sage, TeX
C_3\times S_3\times D_{12}
% in TeX
G:=Group("C3xS3xD12");
// GroupNames label
G:=SmallGroup(432,649);
// by ID
G=gap.SmallGroup(432,649);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,303,142,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^12=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations