# Extensions 1→N→G→Q→1 with N=He3 and Q=C2×D4

Direct product G=N×Q with N=He3 and Q=C2×D4
dρLabelID
C2×D4×He372C2xD4xHe3432,404

Semidirect products G=N:Q with N=He3 and Q=C2×D4
extensionφ:Q→Out NdρLabelID
He3⋊(C2×D4) = C2×He3⋊D4φ: C2×D4/C2D4 ⊆ Out He3366+He3:(C2xD4)432,530
He32(C2×D4) = C3⋊S3⋊D12φ: C2×D4/C4C22 ⊆ Out He33612+He3:2(C2xD4)432,301
He33(C2×D4) = C12.86S32φ: C2×D4/C4C22 ⊆ Out He3366+He3:3(C2xD4)432,302
He34(C2×D4) = C2×He32D4φ: C2×D4/C22C22 ⊆ Out He372He3:4(C2xD4)432,320
He35(C2×D4) = C2×He33D4φ: C2×D4/C22C22 ⊆ Out He372He3:5(C2xD4)432,322
He36(C2×D4) = C62⋊D6φ: C2×D4/C22C22 ⊆ Out He33612+He3:6(C2xD4)432,323
He37(C2×D4) = C622D6φ: C2×D4/C22C22 ⊆ Out He3366He3:7(C2xD4)432,324
He38(C2×D4) = C2×He34D4φ: C2×D4/C2×C4C2 ⊆ Out He372He3:8(C2xD4)432,350
He39(C2×D4) = C2×He35D4φ: C2×D4/C2×C4C2 ⊆ Out He372He3:9(C2xD4)432,386
He310(C2×D4) = D4×C32⋊C6φ: C2×D4/D4C2 ⊆ Out He33612+He3:10(C2xD4)432,360
He311(C2×D4) = D4×He3⋊C2φ: C2×D4/D4C2 ⊆ Out He3366He3:11(C2xD4)432,390
He312(C2×D4) = C2×He36D4φ: C2×D4/C23C2 ⊆ Out He372He3:12(C2xD4)432,377
He313(C2×D4) = C2×He37D4φ: C2×D4/C23C2 ⊆ Out He372He3:13(C2xD4)432,399

׿
×
𝔽