Extensions 1→N→G→Q→1 with N=He3 and Q=C2×Q8

Direct product G=N×Q with N=He3 and Q=C2×Q8
dρLabelID
C2×Q8×He3144C2xQ8xHe3432,407

Semidirect products G=N:Q with N=He3 and Q=C2×Q8
extensionφ:Q→Out NdρLabelID
He3⋊(C2×Q8) = C2×SU3(𝔽2)φ: C2×Q8/C2Q8 ⊆ Out He3543He3:(C2xQ8)432,531
He32(C2×Q8) = C3⋊S3⋊Dic6φ: C2×Q8/C4C22 ⊆ Out He37212-He3:2(C2xQ8)432,294
He33(C2×Q8) = C12.85S32φ: C2×Q8/C4C22 ⊆ Out He3726-He3:3(C2xQ8)432,298
He34(C2×Q8) = C2×He32Q8φ: C2×Q8/C22C22 ⊆ Out He3144He3:4(C2xQ8)432,316
He35(C2×Q8) = C2×He33Q8φ: C2×Q8/C2×C4C2 ⊆ Out He3144He3:5(C2xQ8)432,348
He36(C2×Q8) = C2×He34Q8φ: C2×Q8/C2×C4C2 ⊆ Out He3144He3:6(C2xQ8)432,384
He37(C2×Q8) = Q8×C32⋊C6φ: C2×Q8/Q8C2 ⊆ Out He37212-He3:7(C2xQ8)432,368
He38(C2×Q8) = Q8×He3⋊C2φ: C2×Q8/Q8C2 ⊆ Out He3726He3:8(C2xQ8)432,394


׿
×
𝔽