non-abelian, supersoluble, monomial
Aliases: C3⋊S3⋊Dic6, C32⋊C6⋊Q8, C12.21S32, He3⋊2(C2×Q8), C32⋊1(S3×Q8), He3⋊4Q8⋊3C2, He3⋊2Q8⋊2C2, He3⋊3Q8⋊4C2, (C3×C12).20D6, C3⋊Dic3.5D6, C3.3(S3×Dic6), C32⋊4Q8⋊3S3, C4.5(C32⋊D6), C32⋊1(C2×Dic6), (C2×He3).1C23, C32⋊C12.5C22, (C4×He3).16C22, He3⋊3C4.4C22, C6.75(C2×S32), (C4×C3⋊S3).1S3, C6.S32.C2, (C2×C3⋊S3).5D6, C2.4(C2×C32⋊D6), (C4×C32⋊C6).2C2, (C3×C6).1(C22×S3), (C2×C32⋊C6).4C22, SmallGroup(432,294)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊S3⋊Dic6
G = < a,b,c,d,e | a3=b3=c2=d12=1, e2=d6, dbd-1=ab=ba, cac=eae-1=a-1, ad=da, cbc=b-1, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 771 in 145 conjugacy classes, 39 normal (25 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×Q8, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C2×C12, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C2×Dic6, S3×Q8, C32⋊C6, C2×He3, S3×Dic3, C6.D6, C32⋊2Q8, C3×Dic6, S3×C12, C32⋊4Q8, C4×C3⋊S3, C32⋊C12, C32⋊C12, He3⋊3C4, C4×He3, C2×C32⋊C6, S3×Dic6, Dic3.D6, He3⋊2Q8, C6.S32, He3⋊3Q8, C4×C32⋊C6, He3⋊4Q8, C3⋊S3⋊Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, S3×Q8, C2×S32, C32⋊D6, S3×Dic6, C2×C32⋊D6, C3⋊S3⋊Dic6
(1 34 22)(2 35 23)(3 36 24)(4 25 13)(5 26 14)(6 27 15)(7 28 16)(8 29 17)(9 30 18)(10 31 19)(11 32 20)(12 33 21)(37 57 65)(38 58 66)(39 59 67)(40 60 68)(41 49 69)(42 50 70)(43 51 71)(44 52 72)(45 53 61)(46 54 62)(47 55 63)(48 56 64)
(2 35 23)(3 24 36)(5 26 14)(6 15 27)(8 29 17)(9 18 30)(11 32 20)(12 21 33)(37 57 65)(38 66 58)(40 60 68)(41 69 49)(43 51 71)(44 72 52)(46 54 62)(47 63 55)
(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(21 33)(22 34)(23 35)(24 36)(49 69)(50 70)(51 71)(52 72)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 42 7 48)(2 41 8 47)(3 40 9 46)(4 39 10 45)(5 38 11 44)(6 37 12 43)(13 59 19 53)(14 58 20 52)(15 57 21 51)(16 56 22 50)(17 55 23 49)(18 54 24 60)(25 67 31 61)(26 66 32 72)(27 65 33 71)(28 64 34 70)(29 63 35 69)(30 62 36 68)
G:=sub<Sym(72)| (1,34,22)(2,35,23)(3,36,24)(4,25,13)(5,26,14)(6,27,15)(7,28,16)(8,29,17)(9,30,18)(10,31,19)(11,32,20)(12,33,21)(37,57,65)(38,58,66)(39,59,67)(40,60,68)(41,49,69)(42,50,70)(43,51,71)(44,52,72)(45,53,61)(46,54,62)(47,55,63)(48,56,64), (2,35,23)(3,24,36)(5,26,14)(6,15,27)(8,29,17)(9,18,30)(11,32,20)(12,21,33)(37,57,65)(38,66,58)(40,60,68)(41,69,49)(43,51,71)(44,72,52)(46,54,62)(47,63,55), (13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,42,7,48)(2,41,8,47)(3,40,9,46)(4,39,10,45)(5,38,11,44)(6,37,12,43)(13,59,19,53)(14,58,20,52)(15,57,21,51)(16,56,22,50)(17,55,23,49)(18,54,24,60)(25,67,31,61)(26,66,32,72)(27,65,33,71)(28,64,34,70)(29,63,35,69)(30,62,36,68)>;
G:=Group( (1,34,22)(2,35,23)(3,36,24)(4,25,13)(5,26,14)(6,27,15)(7,28,16)(8,29,17)(9,30,18)(10,31,19)(11,32,20)(12,33,21)(37,57,65)(38,58,66)(39,59,67)(40,60,68)(41,49,69)(42,50,70)(43,51,71)(44,52,72)(45,53,61)(46,54,62)(47,55,63)(48,56,64), (2,35,23)(3,24,36)(5,26,14)(6,15,27)(8,29,17)(9,18,30)(11,32,20)(12,21,33)(37,57,65)(38,66,58)(40,60,68)(41,69,49)(43,51,71)(44,72,52)(46,54,62)(47,63,55), (13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(21,33)(22,34)(23,35)(24,36)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,42,7,48)(2,41,8,47)(3,40,9,46)(4,39,10,45)(5,38,11,44)(6,37,12,43)(13,59,19,53)(14,58,20,52)(15,57,21,51)(16,56,22,50)(17,55,23,49)(18,54,24,60)(25,67,31,61)(26,66,32,72)(27,65,33,71)(28,64,34,70)(29,63,35,69)(30,62,36,68) );
G=PermutationGroup([[(1,34,22),(2,35,23),(3,36,24),(4,25,13),(5,26,14),(6,27,15),(7,28,16),(8,29,17),(9,30,18),(10,31,19),(11,32,20),(12,33,21),(37,57,65),(38,58,66),(39,59,67),(40,60,68),(41,49,69),(42,50,70),(43,51,71),(44,52,72),(45,53,61),(46,54,62),(47,55,63),(48,56,64)], [(2,35,23),(3,24,36),(5,26,14),(6,15,27),(8,29,17),(9,18,30),(11,32,20),(12,21,33),(37,57,65),(38,66,58),(40,60,68),(41,69,49),(43,51,71),(44,72,52),(46,54,62),(47,63,55)], [(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(21,33),(22,34),(23,35),(24,36),(49,69),(50,70),(51,71),(52,72),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,42,7,48),(2,41,8,47),(3,40,9,46),(4,39,10,45),(5,38,11,44),(6,37,12,43),(13,59,19,53),(14,58,20,52),(15,57,21,51),(16,56,22,50),(17,55,23,49),(18,54,24,60),(25,67,31,61),(26,66,32,72),(27,65,33,71),(28,64,34,70),(29,63,35,69),(30,62,36,68)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | ··· | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 2 | 18 | ··· | 18 | 2 | 6 | 6 | 12 | 18 | 18 | 4 | 6 | 6 | 12 | 12 | 12 | 18 | 18 | 36 | 36 | 36 | 36 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | - | + | + | - | + | + | + | - | + | - | + | - | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C3⋊S3⋊Dic6 | S3 | S3 | Q8 | D6 | D6 | D6 | Dic6 | S32 | S3×Q8 | C2×S32 | S3×Dic6 | C32⋊D6 | C2×C32⋊D6 |
kernel | C3⋊S3⋊Dic6 | He3⋊2Q8 | C6.S32 | He3⋊3Q8 | C4×C32⋊C6 | He3⋊4Q8 | C1 | C32⋊4Q8 | C4×C3⋊S3 | C32⋊C6 | C3⋊Dic3 | C3×C12 | C2×C3⋊S3 | C3⋊S3 | C12 | C32 | C6 | C3 | C4 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 4 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C3⋊S3⋊Dic6 ►in GL10(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 12 | 12 | 12 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 | 12 | 0 | 12 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 12 | 12 | 12 | 12 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 12 | 12 | 12 | 11 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 | 0 |
G:=sub<GL(10,GF(13))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,12,0,0,1,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,12,12,1,0,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,1,0,0,0,12,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,12,12,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12],[0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,12,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,12],[1,0,8,0,0,0,0,0,0,0,0,1,0,8,0,0,0,0,0,0,3,0,12,0,0,0,0,0,0,0,0,3,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,0,0,0,12,11,1,1,0,0,0,0,0,0,1,12,0,0],[1,0,6,0,0,0,0,0,0,0,0,1,0,6,0,0,0,0,0,0,4,0,12,0,0,0,0,0,0,0,0,4,0,12,0,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,2,1,12,12,0,0,0,0,0,0,1,12,0,0] >;
C3⋊S3⋊Dic6 in GAP, Magma, Sage, TeX
C_3\rtimes S_3\rtimes {\rm Dic}_6
% in TeX
G:=Group("C3:S3:Dic6");
// GroupNames label
G:=SmallGroup(432,294);
// by ID
G=gap.SmallGroup(432,294);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,135,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^12=1,e^2=d^6,d*b*d^-1=a*b=b*a,c*a*c=e*a*e^-1=a^-1,a*d=d*a,c*b*c=b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations