Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3xC3:S3

Direct product G=NxQ with N=C2xC4 and Q=C3xC3:S3
dρLabelID
C3:S3xC2xC12144C3:S3xC2xC12432,711

Semidirect products G=N:Q with N=C2xC4 and Q=C3xC3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C3xC3:S3) = C3xC6.11D12φ: C3xC3:S3/C33C2 ⊆ Aut C2xC4144(C2xC4):1(C3xC3:S3)432,490
(C2xC4):2(C3xC3:S3) = C6xC12:S3φ: C3xC3:S3/C33C2 ⊆ Aut C2xC4144(C2xC4):2(C3xC3:S3)432,712
(C2xC4):3(C3xC3:S3) = C3xC12.59D6φ: C3xC3:S3/C33C2 ⊆ Aut C2xC472(C2xC4):3(C3xC3:S3)432,713

Non-split extensions G=N.Q with N=C2xC4 and Q=C3xC3:S3
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C3xC3:S3) = C3xC6.Dic6φ: C3xC3:S3/C33C2 ⊆ Aut C2xC4144(C2xC4).1(C3xC3:S3)432,488
(C2xC4).2(C3xC3:S3) = C3xC12.58D6φ: C3xC3:S3/C33C2 ⊆ Aut C2xC472(C2xC4).2(C3xC3:S3)432,486
(C2xC4).3(C3xC3:S3) = C3xC12:Dic3φ: C3xC3:S3/C33C2 ⊆ Aut C2xC4144(C2xC4).3(C3xC3:S3)432,489
(C2xC4).4(C3xC3:S3) = C6xC32:4Q8φ: C3xC3:S3/C33C2 ⊆ Aut C2xC4144(C2xC4).4(C3xC3:S3)432,710
(C2xC4).5(C3xC3:S3) = C6xC32:4C8central extension (φ=1)144(C2xC4).5(C3xC3:S3)432,485
(C2xC4).6(C3xC3:S3) = C12xC3:Dic3central extension (φ=1)144(C2xC4).6(C3xC3:S3)432,487

׿
x
:
Z
F
o
wr
Q
<