# Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C3×C3⋊S3

Direct product G=N×Q with N=C2×C4 and Q=C3×C3⋊S3
dρLabelID
C3⋊S3×C2×C12144C3:S3xC2xC12432,711

Semidirect products G=N:Q with N=C2×C4 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1(C3×C3⋊S3) = C3×C6.11D12φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C4144(C2xC4):1(C3xC3:S3)432,490
(C2×C4)⋊2(C3×C3⋊S3) = C6×C12⋊S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C4144(C2xC4):2(C3xC3:S3)432,712
(C2×C4)⋊3(C3×C3⋊S3) = C3×C12.59D6φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C472(C2xC4):3(C3xC3:S3)432,713

Non-split extensions G=N.Q with N=C2×C4 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
(C2×C4).1(C3×C3⋊S3) = C3×C6.Dic6φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C4144(C2xC4).1(C3xC3:S3)432,488
(C2×C4).2(C3×C3⋊S3) = C3×C12.58D6φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C472(C2xC4).2(C3xC3:S3)432,486
(C2×C4).3(C3×C3⋊S3) = C3×C12⋊Dic3φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C4144(C2xC4).3(C3xC3:S3)432,489
(C2×C4).4(C3×C3⋊S3) = C6×C324Q8φ: C3×C3⋊S3/C33C2 ⊆ Aut C2×C4144(C2xC4).4(C3xC3:S3)432,710
(C2×C4).5(C3×C3⋊S3) = C6×C324C8central extension (φ=1)144(C2xC4).5(C3xC3:S3)432,485
(C2×C4).6(C3×C3⋊S3) = C12×C3⋊Dic3central extension (φ=1)144(C2xC4).6(C3xC3:S3)432,487

׿
×
𝔽