Copied to
clipboard

G = C3×C12.58D6order 432 = 24·33

Direct product of C3 and C12.58D6

direct product, metabelian, supersoluble, monomial

Aliases: C3×C12.58D6, C62.24C12, C3317M4(2), C62.24Dic3, (C6×C12).30C6, (C6×C12).40S3, (C3×C62).9C4, C12.104(S3×C6), (C3×C12).15C12, C324C816C6, (C3×C12).226D6, (C32×C12).9C4, C12.7(C3×Dic3), C6.25(C6×Dic3), (C3×C12).20Dic3, C12.11(C3⋊Dic3), C3211(C3×M4(2)), (C32×C12).94C22, C3210(C4.Dic3), (C3×C6×C12).8C2, C4.(C3×C3⋊Dic3), C4.15(C6×C3⋊S3), C12.97(C2×C3⋊S3), C2.3(C6×C3⋊Dic3), C32(C3×C4.Dic3), (C2×C12).28(C3×S3), (C3×C12).99(C2×C6), (C3×C6).62(C2×C12), C22.(C3×C3⋊Dic3), C6.21(C2×C3⋊Dic3), (C2×C12).25(C3⋊S3), (C3×C324C8)⋊20C2, (C32×C6).69(C2×C4), (C2×C6).6(C3⋊Dic3), (C2×C6).25(C3×Dic3), (C3×C6).67(C2×Dic3), (C2×C4).2(C3×C3⋊S3), SmallGroup(432,486)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C12.58D6
C1C3C32C3×C6C3×C12C32×C12C3×C324C8 — C3×C12.58D6
C32C3×C6 — C3×C12.58D6
C1C12C2×C12

Generators and relations for C3×C12.58D6
 G = < a,b,c,d | a3=b12=c6=1, d2=b3, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=b6c-1 >

Subgroups: 356 in 184 conjugacy classes, 78 normal (26 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C8, C2×C4, C32, C32, C32, C12, C12, C12, C2×C6, C2×C6, C2×C6, M4(2), C3×C6, C3×C6, C3×C6, C3⋊C8, C24, C2×C12, C2×C12, C2×C12, C33, C3×C12, C3×C12, C3×C12, C62, C62, C62, C4.Dic3, C3×M4(2), C32×C6, C32×C6, C3×C3⋊C8, C324C8, C6×C12, C6×C12, C6×C12, C32×C12, C3×C62, C3×C4.Dic3, C12.58D6, C3×C324C8, C3×C6×C12, C3×C12.58D6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, M4(2), C3×S3, C3⋊S3, C2×Dic3, C2×C12, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C4.Dic3, C3×M4(2), C3×C3⋊S3, C6×Dic3, C2×C3⋊Dic3, C3×C3⋊Dic3, C6×C3⋊S3, C3×C4.Dic3, C12.58D6, C6×C3⋊Dic3, C3×C12.58D6

Smallest permutation representation of C3×C12.58D6
On 72 points
Generators in S72
(1 71 52)(2 72 53)(3 61 54)(4 62 55)(5 63 56)(6 64 57)(7 65 58)(8 66 59)(9 67 60)(10 68 49)(11 69 50)(12 70 51)(13 28 43)(14 29 44)(15 30 45)(16 31 46)(17 32 47)(18 33 48)(19 34 37)(20 35 38)(21 36 39)(22 25 40)(23 26 41)(24 27 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 71 52)(2 72 53)(3 61 54)(4 62 55)(5 63 56)(6 64 57)(7 65 58)(8 66 59)(9 67 60)(10 68 49)(11 69 50)(12 70 51)(13 37 28 19 43 34)(14 38 29 20 44 35)(15 39 30 21 45 36)(16 40 31 22 46 25)(17 41 32 23 47 26)(18 42 33 24 48 27)
(1 44 4 47 7 38 10 41)(2 37 5 40 8 43 11 46)(3 42 6 45 9 48 12 39)(13 69 16 72 19 63 22 66)(14 62 17 65 20 68 23 71)(15 67 18 70 21 61 24 64)(25 59 28 50 31 53 34 56)(26 52 29 55 32 58 35 49)(27 57 30 60 33 51 36 54)

G:=sub<Sym(72)| (1,71,52)(2,72,53)(3,61,54)(4,62,55)(5,63,56)(6,64,57)(7,65,58)(8,66,59)(9,67,60)(10,68,49)(11,69,50)(12,70,51)(13,28,43)(14,29,44)(15,30,45)(16,31,46)(17,32,47)(18,33,48)(19,34,37)(20,35,38)(21,36,39)(22,25,40)(23,26,41)(24,27,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,71,52)(2,72,53)(3,61,54)(4,62,55)(5,63,56)(6,64,57)(7,65,58)(8,66,59)(9,67,60)(10,68,49)(11,69,50)(12,70,51)(13,37,28,19,43,34)(14,38,29,20,44,35)(15,39,30,21,45,36)(16,40,31,22,46,25)(17,41,32,23,47,26)(18,42,33,24,48,27), (1,44,4,47,7,38,10,41)(2,37,5,40,8,43,11,46)(3,42,6,45,9,48,12,39)(13,69,16,72,19,63,22,66)(14,62,17,65,20,68,23,71)(15,67,18,70,21,61,24,64)(25,59,28,50,31,53,34,56)(26,52,29,55,32,58,35,49)(27,57,30,60,33,51,36,54)>;

G:=Group( (1,71,52)(2,72,53)(3,61,54)(4,62,55)(5,63,56)(6,64,57)(7,65,58)(8,66,59)(9,67,60)(10,68,49)(11,69,50)(12,70,51)(13,28,43)(14,29,44)(15,30,45)(16,31,46)(17,32,47)(18,33,48)(19,34,37)(20,35,38)(21,36,39)(22,25,40)(23,26,41)(24,27,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,71,52)(2,72,53)(3,61,54)(4,62,55)(5,63,56)(6,64,57)(7,65,58)(8,66,59)(9,67,60)(10,68,49)(11,69,50)(12,70,51)(13,37,28,19,43,34)(14,38,29,20,44,35)(15,39,30,21,45,36)(16,40,31,22,46,25)(17,41,32,23,47,26)(18,42,33,24,48,27), (1,44,4,47,7,38,10,41)(2,37,5,40,8,43,11,46)(3,42,6,45,9,48,12,39)(13,69,16,72,19,63,22,66)(14,62,17,65,20,68,23,71)(15,67,18,70,21,61,24,64)(25,59,28,50,31,53,34,56)(26,52,29,55,32,58,35,49)(27,57,30,60,33,51,36,54) );

G=PermutationGroup([[(1,71,52),(2,72,53),(3,61,54),(4,62,55),(5,63,56),(6,64,57),(7,65,58),(8,66,59),(9,67,60),(10,68,49),(11,69,50),(12,70,51),(13,28,43),(14,29,44),(15,30,45),(16,31,46),(17,32,47),(18,33,48),(19,34,37),(20,35,38),(21,36,39),(22,25,40),(23,26,41),(24,27,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,71,52),(2,72,53),(3,61,54),(4,62,55),(5,63,56),(6,64,57),(7,65,58),(8,66,59),(9,67,60),(10,68,49),(11,69,50),(12,70,51),(13,37,28,19,43,34),(14,38,29,20,44,35),(15,39,30,21,45,36),(16,40,31,22,46,25),(17,41,32,23,47,26),(18,42,33,24,48,27)], [(1,44,4,47,7,38,10,41),(2,37,5,40,8,43,11,46),(3,42,6,45,9,48,12,39),(13,69,16,72,19,63,22,66),(14,62,17,65,20,68,23,71),(15,67,18,70,21,61,24,64),(25,59,28,50,31,53,34,56),(26,52,29,55,32,58,35,49),(27,57,30,60,33,51,36,54)]])

126 conjugacy classes

class 1 2A2B3A3B3C···3N4A4B4C6A6B6C···6AN8A8B8C8D12A12B12C12D12E···12BB24A···24H
order122333···3444666···688881212121212···1224···24
size112112···2112112···21818181811112···218···18

126 irreducible representations

dim1111111111222222222222
type++++-+-
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6Dic3M4(2)C3×S3C3×Dic3S3×C6C3×Dic3C4.Dic3C3×M4(2)C3×C4.Dic3
kernelC3×C12.58D6C3×C324C8C3×C6×C12C12.58D6C32×C12C3×C62C324C8C6×C12C3×C12C62C6×C12C3×C12C3×C12C62C33C2×C12C12C12C2×C6C32C32C3
# reps121222424444442888816432

Matrix representation of C3×C12.58D6 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
65000
20900
00270
00027
,
8000
536400
0080
0009
,
201700
585300
00064
0030
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[65,20,0,0,0,9,0,0,0,0,27,0,0,0,0,27],[8,53,0,0,0,64,0,0,0,0,8,0,0,0,0,9],[20,58,0,0,17,53,0,0,0,0,0,3,0,0,64,0] >;

C3×C12.58D6 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{58}D_6
% in TeX

G:=Group("C3xC12.58D6");
// GroupNames label

G:=SmallGroup(432,486);
// by ID

G=gap.SmallGroup(432,486);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,80,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^6=1,d^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽