Copied to
clipboard

G = C3×C12.59D6order 432 = 24·33

Direct product of C3 and C12.59D6

direct product, metabelian, supersoluble, monomial

Aliases: C3×C12.59D6, C62.155D6, (C6×C12)⋊13C6, (C6×C12)⋊14S3, C12⋊S314C6, C327D49C6, C12.105(S3×C6), (C3×C12).211D6, C3328(C4○D4), C62.78(C2×C6), C324Q814C6, C3226(C4○D12), (C3×C62).64C22, (C32×C6).88C23, (C32×C12).100C22, (C3×C6×C12)⋊8C2, C6.55(S3×C2×C6), (C4×C3⋊S3)⋊13C6, (C2×C12)⋊4(C3×S3), C4.16(C6×C3⋊S3), C35(C3×C4○D12), (C12×C3⋊S3)⋊17C2, (C2×C12)⋊7(C3⋊S3), C12.98(C2×C3⋊S3), (C2×C6).78(S3×C6), C22.2(C6×C3⋊S3), (C3×C12).76(C2×C6), (C3×C12⋊S3)⋊17C2, C3212(C3×C4○D4), C6.55(C22×C3⋊S3), (C6×C3⋊S3).61C22, (C3×C327D4)⋊11C2, C3⋊Dic3.22(C2×C6), (C3×C6).62(C22×C6), (C3×C324Q8)⋊17C2, (C3×C6).177(C22×S3), (C3×C3⋊Dic3).59C22, C2.5(C2×C6×C3⋊S3), (C2×C4)⋊3(C3×C3⋊S3), (C2×C6).28(C2×C3⋊S3), (C2×C3⋊S3).22(C2×C6), SmallGroup(432,713)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C12.59D6
C1C3C32C3×C6C32×C6C6×C3⋊S3C12×C3⋊S3 — C3×C12.59D6
C32C3×C6 — C3×C12.59D6
C1C12C2×C12

Generators and relations for C3×C12.59D6
 G = < a,b,c,d | a3=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b5, dcd-1=b6c-1 >

Subgroups: 884 in 304 conjugacy classes, 94 normal (30 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, C62, C62, C4○D12, C3×C4○D4, C3×C3⋊S3, C32×C6, C32×C6, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, C6×C12, C6×C12, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, C3×C62, C3×C4○D12, C12.59D6, C3×C324Q8, C12×C3⋊S3, C3×C12⋊S3, C3×C327D4, C3×C6×C12, C3×C12.59D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C22×S3, C22×C6, S3×C6, C2×C3⋊S3, C4○D12, C3×C4○D4, C3×C3⋊S3, S3×C2×C6, C22×C3⋊S3, C6×C3⋊S3, C3×C4○D12, C12.59D6, C2×C6×C3⋊S3, C3×C12.59D6

Smallest permutation representation of C3×C12.59D6
On 72 points
Generators in S72
(1 24 29)(2 13 30)(3 14 31)(4 15 32)(5 16 33)(6 17 34)(7 18 35)(8 19 36)(9 20 25)(10 21 26)(11 22 27)(12 23 28)(37 52 71)(38 53 72)(39 54 61)(40 55 62)(41 56 63)(42 57 64)(43 58 65)(44 59 66)(45 60 67)(46 49 68)(47 50 69)(48 51 70)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 24 29)(2 13 30)(3 14 31)(4 15 32)(5 16 33)(6 17 34)(7 18 35)(8 19 36)(9 20 25)(10 21 26)(11 22 27)(12 23 28)(37 65 52 43 71 58)(38 66 53 44 72 59)(39 67 54 45 61 60)(40 68 55 46 62 49)(41 69 56 47 63 50)(42 70 57 48 64 51)
(1 47 7 41)(2 40 8 46)(3 45 9 39)(4 38 10 44)(5 43 11 37)(6 48 12 42)(13 55 19 49)(14 60 20 54)(15 53 21 59)(16 58 22 52)(17 51 23 57)(18 56 24 50)(25 61 31 67)(26 66 32 72)(27 71 33 65)(28 64 34 70)(29 69 35 63)(30 62 36 68)

G:=sub<Sym(72)| (1,24,29)(2,13,30)(3,14,31)(4,15,32)(5,16,33)(6,17,34)(7,18,35)(8,19,36)(9,20,25)(10,21,26)(11,22,27)(12,23,28)(37,52,71)(38,53,72)(39,54,61)(40,55,62)(41,56,63)(42,57,64)(43,58,65)(44,59,66)(45,60,67)(46,49,68)(47,50,69)(48,51,70), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,24,29)(2,13,30)(3,14,31)(4,15,32)(5,16,33)(6,17,34)(7,18,35)(8,19,36)(9,20,25)(10,21,26)(11,22,27)(12,23,28)(37,65,52,43,71,58)(38,66,53,44,72,59)(39,67,54,45,61,60)(40,68,55,46,62,49)(41,69,56,47,63,50)(42,70,57,48,64,51), (1,47,7,41)(2,40,8,46)(3,45,9,39)(4,38,10,44)(5,43,11,37)(6,48,12,42)(13,55,19,49)(14,60,20,54)(15,53,21,59)(16,58,22,52)(17,51,23,57)(18,56,24,50)(25,61,31,67)(26,66,32,72)(27,71,33,65)(28,64,34,70)(29,69,35,63)(30,62,36,68)>;

G:=Group( (1,24,29)(2,13,30)(3,14,31)(4,15,32)(5,16,33)(6,17,34)(7,18,35)(8,19,36)(9,20,25)(10,21,26)(11,22,27)(12,23,28)(37,52,71)(38,53,72)(39,54,61)(40,55,62)(41,56,63)(42,57,64)(43,58,65)(44,59,66)(45,60,67)(46,49,68)(47,50,69)(48,51,70), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,24,29)(2,13,30)(3,14,31)(4,15,32)(5,16,33)(6,17,34)(7,18,35)(8,19,36)(9,20,25)(10,21,26)(11,22,27)(12,23,28)(37,65,52,43,71,58)(38,66,53,44,72,59)(39,67,54,45,61,60)(40,68,55,46,62,49)(41,69,56,47,63,50)(42,70,57,48,64,51), (1,47,7,41)(2,40,8,46)(3,45,9,39)(4,38,10,44)(5,43,11,37)(6,48,12,42)(13,55,19,49)(14,60,20,54)(15,53,21,59)(16,58,22,52)(17,51,23,57)(18,56,24,50)(25,61,31,67)(26,66,32,72)(27,71,33,65)(28,64,34,70)(29,69,35,63)(30,62,36,68) );

G=PermutationGroup([[(1,24,29),(2,13,30),(3,14,31),(4,15,32),(5,16,33),(6,17,34),(7,18,35),(8,19,36),(9,20,25),(10,21,26),(11,22,27),(12,23,28),(37,52,71),(38,53,72),(39,54,61),(40,55,62),(41,56,63),(42,57,64),(43,58,65),(44,59,66),(45,60,67),(46,49,68),(47,50,69),(48,51,70)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,24,29),(2,13,30),(3,14,31),(4,15,32),(5,16,33),(6,17,34),(7,18,35),(8,19,36),(9,20,25),(10,21,26),(11,22,27),(12,23,28),(37,65,52,43,71,58),(38,66,53,44,72,59),(39,67,54,45,61,60),(40,68,55,46,62,49),(41,69,56,47,63,50),(42,70,57,48,64,51)], [(1,47,7,41),(2,40,8,46),(3,45,9,39),(4,38,10,44),(5,43,11,37),(6,48,12,42),(13,55,19,49),(14,60,20,54),(15,53,21,59),(16,58,22,52),(17,51,23,57),(18,56,24,50),(25,61,31,67),(26,66,32,72),(27,71,33,65),(28,64,34,70),(29,69,35,63),(30,62,36,68)]])

126 conjugacy classes

class 1 2A2B2C2D3A3B3C···3N4A4B4C4D4E6A6B6C···6AN6AO6AP6AQ6AR12A12B12C12D12E···12BB12BC12BD12BE12BF
order12222333···344444666···666661212121212···1212121212
size1121818112···21121818112···21818181811112···218181818

126 irreducible representations

dim1111111111112222222222
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3D6D6C4○D4C3×S3S3×C6S3×C6C4○D12C3×C4○D4C3×C4○D12
kernelC3×C12.59D6C3×C324Q8C12×C3⋊S3C3×C12⋊S3C3×C327D4C3×C6×C12C12.59D6C324Q8C4×C3⋊S3C12⋊S3C327D4C6×C12C6×C12C3×C12C62C33C2×C12C12C2×C6C32C32C3
# reps1121212242424842816816432

Matrix representation of C3×C12.59D6 in GL6(𝔽13)

900000
090000
001000
000100
000010
000001
,
300000
090000
009000
000300
000050
000005
,
900000
030000
001000
000100
000010
0000012
,
030000
900000
000100
001000
000001
0000120

G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[9,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[0,9,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;

C3×C12.59D6 in GAP, Magma, Sage, TeX

C_3\times C_{12}._{59}D_6
% in TeX

G:=Group("C3xC12.59D6");
// GroupNames label

G:=SmallGroup(432,713);
// by ID

G=gap.SmallGroup(432,713);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,176,590,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽