direct product, metabelian, supersoluble, monomial
Aliases: C3×C6.Dic6, C62.141D6, C6.26(S3×C12), C33⋊18(C4⋊C4), (C6×C12).28S3, (C6×C12).26C6, C3⋊Dic3⋊5C12, C62.65(C2×C6), (C3×C6).28Dic6, C6.12(C3×Dic6), (C32×C6).71D4, (C32×C6).12Q8, C6.33(C32⋊7D4), (C3×C62).47C22, C6.12(C32⋊4Q8), C32⋊14(Dic3⋊C4), (C3×C6×C12).2C2, C2.4(C12×C3⋊S3), C6.27(C4×C3⋊S3), C32⋊11(C3×C4⋊C4), (C3×C6).78(C4×S3), (C2×C6).68(S3×C6), C3⋊3(C3×Dic3⋊C4), (C3×C6).67(C3×D4), C6.36(C3×C3⋊D4), C22.4(C6×C3⋊S3), (C3×C6).14(C3×Q8), (C2×C12).5(C3⋊S3), (C2×C12).10(C3×S3), (C3×C6).49(C2×C12), (C3×C3⋊Dic3)⋊10C4, (C2×C3⋊Dic3).8C6, C2.1(C3×C32⋊7D4), C2.1(C3×C32⋊4Q8), (C6×C3⋊Dic3).16C2, (C32×C6).57(C2×C4), (C3×C6).106(C3⋊D4), (C2×C4).1(C3×C3⋊S3), (C2×C6).62(C2×C3⋊S3), SmallGroup(432,488)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C6.Dic6
G = < a,b,c,d | a3=b6=c12=1, d2=b3c6, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=b3c-1 >
Subgroups: 532 in 220 conjugacy classes, 82 normal (30 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C2×C4, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, Dic3⋊C4, C3×C4⋊C4, C32×C6, C6×Dic3, C2×C3⋊Dic3, C6×C12, C6×C12, C6×C12, C3×C3⋊Dic3, C3×C3⋊Dic3, C32×C12, C3×C62, C3×Dic3⋊C4, C6.Dic6, C6×C3⋊Dic3, C3×C6×C12, C3×C6.Dic6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C12, D6, C2×C6, C4⋊C4, C3×S3, C3⋊S3, Dic6, C4×S3, C3⋊D4, C2×C12, C3×D4, C3×Q8, S3×C6, C2×C3⋊S3, Dic3⋊C4, C3×C4⋊C4, C3×C3⋊S3, C3×Dic6, S3×C12, C3×C3⋊D4, C32⋊4Q8, C4×C3⋊S3, C32⋊7D4, C6×C3⋊S3, C3×Dic3⋊C4, C6.Dic6, C3×C32⋊4Q8, C12×C3⋊S3, C3×C32⋊7D4, C3×C6.Dic6
(1 117 26)(2 118 27)(3 119 28)(4 120 29)(5 109 30)(6 110 31)(7 111 32)(8 112 33)(9 113 34)(10 114 35)(11 115 36)(12 116 25)(13 137 121)(14 138 122)(15 139 123)(16 140 124)(17 141 125)(18 142 126)(19 143 127)(20 144 128)(21 133 129)(22 134 130)(23 135 131)(24 136 132)(37 100 53)(38 101 54)(39 102 55)(40 103 56)(41 104 57)(42 105 58)(43 106 59)(44 107 60)(45 108 49)(46 97 50)(47 98 51)(48 99 52)(61 82 86)(62 83 87)(63 84 88)(64 73 89)(65 74 90)(66 75 91)(67 76 92)(68 77 93)(69 78 94)(70 79 95)(71 80 96)(72 81 85)
(1 67 30 96 113 84)(2 68 31 85 114 73)(3 69 32 86 115 74)(4 70 33 87 116 75)(5 71 34 88 117 76)(6 72 35 89 118 77)(7 61 36 90 119 78)(8 62 25 91 120 79)(9 63 26 92 109 80)(10 64 27 93 110 81)(11 65 28 94 111 82)(12 66 29 95 112 83)(13 45 141 100 129 57)(14 46 142 101 130 58)(15 47 143 102 131 59)(16 48 144 103 132 60)(17 37 133 104 121 49)(18 38 134 105 122 50)(19 39 135 106 123 51)(20 40 136 107 124 52)(21 41 137 108 125 53)(22 42 138 97 126 54)(23 43 139 98 127 55)(24 44 140 99 128 56)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 130 90 40)(2 45 91 123)(3 128 92 38)(4 43 93 121)(5 126 94 48)(6 41 95 131)(7 124 96 46)(8 39 85 129)(9 122 86 44)(10 37 87 127)(11 132 88 42)(12 47 89 125)(13 120 106 68)(14 61 107 113)(15 118 108 66)(16 71 97 111)(17 116 98 64)(18 69 99 109)(19 114 100 62)(20 67 101 119)(21 112 102 72)(22 65 103 117)(23 110 104 70)(24 63 105 115)(25 51 73 141)(26 134 74 56)(27 49 75 139)(28 144 76 54)(29 59 77 137)(30 142 78 52)(31 57 79 135)(32 140 80 50)(33 55 81 133)(34 138 82 60)(35 53 83 143)(36 136 84 58)
G:=sub<Sym(144)| (1,117,26)(2,118,27)(3,119,28)(4,120,29)(5,109,30)(6,110,31)(7,111,32)(8,112,33)(9,113,34)(10,114,35)(11,115,36)(12,116,25)(13,137,121)(14,138,122)(15,139,123)(16,140,124)(17,141,125)(18,142,126)(19,143,127)(20,144,128)(21,133,129)(22,134,130)(23,135,131)(24,136,132)(37,100,53)(38,101,54)(39,102,55)(40,103,56)(41,104,57)(42,105,58)(43,106,59)(44,107,60)(45,108,49)(46,97,50)(47,98,51)(48,99,52)(61,82,86)(62,83,87)(63,84,88)(64,73,89)(65,74,90)(66,75,91)(67,76,92)(68,77,93)(69,78,94)(70,79,95)(71,80,96)(72,81,85), (1,67,30,96,113,84)(2,68,31,85,114,73)(3,69,32,86,115,74)(4,70,33,87,116,75)(5,71,34,88,117,76)(6,72,35,89,118,77)(7,61,36,90,119,78)(8,62,25,91,120,79)(9,63,26,92,109,80)(10,64,27,93,110,81)(11,65,28,94,111,82)(12,66,29,95,112,83)(13,45,141,100,129,57)(14,46,142,101,130,58)(15,47,143,102,131,59)(16,48,144,103,132,60)(17,37,133,104,121,49)(18,38,134,105,122,50)(19,39,135,106,123,51)(20,40,136,107,124,52)(21,41,137,108,125,53)(22,42,138,97,126,54)(23,43,139,98,127,55)(24,44,140,99,128,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,130,90,40)(2,45,91,123)(3,128,92,38)(4,43,93,121)(5,126,94,48)(6,41,95,131)(7,124,96,46)(8,39,85,129)(9,122,86,44)(10,37,87,127)(11,132,88,42)(12,47,89,125)(13,120,106,68)(14,61,107,113)(15,118,108,66)(16,71,97,111)(17,116,98,64)(18,69,99,109)(19,114,100,62)(20,67,101,119)(21,112,102,72)(22,65,103,117)(23,110,104,70)(24,63,105,115)(25,51,73,141)(26,134,74,56)(27,49,75,139)(28,144,76,54)(29,59,77,137)(30,142,78,52)(31,57,79,135)(32,140,80,50)(33,55,81,133)(34,138,82,60)(35,53,83,143)(36,136,84,58)>;
G:=Group( (1,117,26)(2,118,27)(3,119,28)(4,120,29)(5,109,30)(6,110,31)(7,111,32)(8,112,33)(9,113,34)(10,114,35)(11,115,36)(12,116,25)(13,137,121)(14,138,122)(15,139,123)(16,140,124)(17,141,125)(18,142,126)(19,143,127)(20,144,128)(21,133,129)(22,134,130)(23,135,131)(24,136,132)(37,100,53)(38,101,54)(39,102,55)(40,103,56)(41,104,57)(42,105,58)(43,106,59)(44,107,60)(45,108,49)(46,97,50)(47,98,51)(48,99,52)(61,82,86)(62,83,87)(63,84,88)(64,73,89)(65,74,90)(66,75,91)(67,76,92)(68,77,93)(69,78,94)(70,79,95)(71,80,96)(72,81,85), (1,67,30,96,113,84)(2,68,31,85,114,73)(3,69,32,86,115,74)(4,70,33,87,116,75)(5,71,34,88,117,76)(6,72,35,89,118,77)(7,61,36,90,119,78)(8,62,25,91,120,79)(9,63,26,92,109,80)(10,64,27,93,110,81)(11,65,28,94,111,82)(12,66,29,95,112,83)(13,45,141,100,129,57)(14,46,142,101,130,58)(15,47,143,102,131,59)(16,48,144,103,132,60)(17,37,133,104,121,49)(18,38,134,105,122,50)(19,39,135,106,123,51)(20,40,136,107,124,52)(21,41,137,108,125,53)(22,42,138,97,126,54)(23,43,139,98,127,55)(24,44,140,99,128,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,130,90,40)(2,45,91,123)(3,128,92,38)(4,43,93,121)(5,126,94,48)(6,41,95,131)(7,124,96,46)(8,39,85,129)(9,122,86,44)(10,37,87,127)(11,132,88,42)(12,47,89,125)(13,120,106,68)(14,61,107,113)(15,118,108,66)(16,71,97,111)(17,116,98,64)(18,69,99,109)(19,114,100,62)(20,67,101,119)(21,112,102,72)(22,65,103,117)(23,110,104,70)(24,63,105,115)(25,51,73,141)(26,134,74,56)(27,49,75,139)(28,144,76,54)(29,59,77,137)(30,142,78,52)(31,57,79,135)(32,140,80,50)(33,55,81,133)(34,138,82,60)(35,53,83,143)(36,136,84,58) );
G=PermutationGroup([[(1,117,26),(2,118,27),(3,119,28),(4,120,29),(5,109,30),(6,110,31),(7,111,32),(8,112,33),(9,113,34),(10,114,35),(11,115,36),(12,116,25),(13,137,121),(14,138,122),(15,139,123),(16,140,124),(17,141,125),(18,142,126),(19,143,127),(20,144,128),(21,133,129),(22,134,130),(23,135,131),(24,136,132),(37,100,53),(38,101,54),(39,102,55),(40,103,56),(41,104,57),(42,105,58),(43,106,59),(44,107,60),(45,108,49),(46,97,50),(47,98,51),(48,99,52),(61,82,86),(62,83,87),(63,84,88),(64,73,89),(65,74,90),(66,75,91),(67,76,92),(68,77,93),(69,78,94),(70,79,95),(71,80,96),(72,81,85)], [(1,67,30,96,113,84),(2,68,31,85,114,73),(3,69,32,86,115,74),(4,70,33,87,116,75),(5,71,34,88,117,76),(6,72,35,89,118,77),(7,61,36,90,119,78),(8,62,25,91,120,79),(9,63,26,92,109,80),(10,64,27,93,110,81),(11,65,28,94,111,82),(12,66,29,95,112,83),(13,45,141,100,129,57),(14,46,142,101,130,58),(15,47,143,102,131,59),(16,48,144,103,132,60),(17,37,133,104,121,49),(18,38,134,105,122,50),(19,39,135,106,123,51),(20,40,136,107,124,52),(21,41,137,108,125,53),(22,42,138,97,126,54),(23,43,139,98,127,55),(24,44,140,99,128,56)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,130,90,40),(2,45,91,123),(3,128,92,38),(4,43,93,121),(5,126,94,48),(6,41,95,131),(7,124,96,46),(8,39,85,129),(9,122,86,44),(10,37,87,127),(11,132,88,42),(12,47,89,125),(13,120,106,68),(14,61,107,113),(15,118,108,66),(16,71,97,111),(17,116,98,64),(18,69,99,109),(19,114,100,62),(20,67,101,119),(21,112,102,72),(22,65,103,117),(23,110,104,70),(24,63,105,115),(25,51,73,141),(26,134,74,56),(27,49,75,139),(28,144,76,54),(29,59,77,137),(30,142,78,52),(31,57,79,135),(32,140,80,50),(33,55,81,133),(34,138,82,60),(35,53,83,143),(36,136,84,58)]])
126 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3N | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | ··· | 6AP | 12A | ··· | 12AZ | 12BA | ··· | 12BH |
| order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
| size | 1 | 1 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 18 | 18 | 18 | 18 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 18 | ··· | 18 |
126 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | - | + | - | ||||||||||||||
| image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | S3 | D4 | Q8 | D6 | C3×S3 | Dic6 | C4×S3 | C3⋊D4 | C3×D4 | C3×Q8 | S3×C6 | C3×Dic6 | S3×C12 | C3×C3⋊D4 |
| kernel | C3×C6.Dic6 | C6×C3⋊Dic3 | C3×C6×C12 | C6.Dic6 | C3×C3⋊Dic3 | C2×C3⋊Dic3 | C6×C12 | C3⋊Dic3 | C6×C12 | C32×C6 | C32×C6 | C62 | C2×C12 | C3×C6 | C3×C6 | C3×C6 | C3×C6 | C3×C6 | C2×C6 | C6 | C6 | C6 |
| # reps | 1 | 2 | 1 | 2 | 4 | 4 | 2 | 8 | 4 | 1 | 1 | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 8 | 16 | 16 | 16 |
Matrix representation of C3×C6.Dic6 ►in GL4(𝔽13) generated by
| 9 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 |
| 0 | 0 | 3 | 0 |
| 0 | 0 | 0 | 3 |
| 12 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 |
| 0 | 0 | 4 | 0 |
| 0 | 0 | 0 | 10 |
| 9 | 0 | 0 | 0 |
| 0 | 10 | 0 | 0 |
| 0 | 0 | 6 | 0 |
| 0 | 0 | 0 | 2 |
| 0 | 1 | 0 | 0 |
| 12 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(13))| [9,0,0,0,0,9,0,0,0,0,3,0,0,0,0,3],[12,0,0,0,0,12,0,0,0,0,4,0,0,0,0,10],[9,0,0,0,0,10,0,0,0,0,6,0,0,0,0,2],[0,12,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C3×C6.Dic6 in GAP, Magma, Sage, TeX
C_3\times C_6.{\rm Dic}_6 % in TeX
G:=Group("C3xC6.Dic6"); // GroupNames label
G:=SmallGroup(432,488);
// by ID
G=gap.SmallGroup(432,488);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,365,92,4037,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^6=c^12=1,d^2=b^3*c^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=b^3*c^-1>;
// generators/relations