# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3×A4

Direct product G=N×Q with N=C2×C6 and Q=C3×A4
dρLabelID
A4×C62108A4xC6^2432,770

Semidirect products G=N:Q with N=C2×C6 and Q=C3×A4
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C3×A4) = C3×A42φ: C3×A4/A4C3 ⊆ Aut C2×C6369(C2xC6):1(C3xA4)432,750
(C2×C6)⋊2(C3×A4) = C32×C22⋊A4φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6):2(C3xA4)432,771

Non-split extensions G=N.Q with N=C2×C6 and Q=C3×A4
extensionφ:Q→Aut NdρLabelID
(C2×C6).1(C3×A4) = A4×C3.A4φ: C3×A4/A4C3 ⊆ Aut C2×C6549(C2xC6).1(C3xA4)432,524
(C2×C6).2(C3×A4) = C3.A42φ: C3×A4/A4C3 ⊆ Aut C2×C6369(C2xC6).2(C3xA4)432,525
(C2×C6).3(C3×A4) = C24⋊He3φ: C3×A4/A4C3 ⊆ Aut C2×C6369(C2xC6).3(C3xA4)432,526
(C2×C6).4(C3×A4) = C24⋊3- 1+2φ: C3×A4/A4C3 ⊆ Aut C2×C6549(C2xC6).4(C3xA4)432,527
(C2×C6).5(C3×A4) = C2423- 1+2φ: C3×A4/A4C3 ⊆ Aut C2×C6369(C2xC6).5(C3xA4)432,528
(C2×C6).6(C3×A4) = C9×C42⋊C3φ: C3×A4/C2×C6C3 ⊆ Aut C2×C61083(C2xC6).6(C3xA4)432,99
(C2×C6).7(C3×A4) = C42⋊3- 1+2φ: C3×A4/C2×C6C3 ⊆ Aut C2×C61083(C2xC6).7(C3xA4)432,100
(C2×C6).8(C3×A4) = C3×C42⋊C9φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).8(C3xA4)432,101
(C2×C6).9(C3×A4) = C122.C3φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6363(C2xC6).9(C3xA4)432,102
(C2×C6).10(C3×A4) = C42⋊He3φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6363(C2xC6).10(C3xA4)432,103
(C2×C6).11(C3×A4) = C32×C42⋊C3φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).11(C3xA4)432,463
(C2×C6).12(C3×A4) = C9×C22⋊A4φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).12(C3xA4)432,551
(C2×C6).13(C3×A4) = C2443- 1+2φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).13(C3xA4)432,552
(C2×C6).14(C3×A4) = C3×C24⋊C9φ: C3×A4/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).14(C3xA4)432,553
(C2×C6).15(C3×A4) = C62.A4φ: C3×A4/C2×C6C3 ⊆ Aut C2×C636(C2xC6).15(C3xA4)432,554
(C2×C6).16(C3×A4) = C62⋊A4φ: C3×A4/C2×C6C3 ⊆ Aut C2×C636(C2xC6).16(C3xA4)432,555
(C2×C6).17(C3×A4) = C18×SL2(𝔽3)central extension (φ=1)144(C2xC6).17(C3xA4)432,327
(C2×C6).18(C3×A4) = C2×C18.A4central extension (φ=1)144(C2xC6).18(C3xA4)432,328
(C2×C6).19(C3×A4) = C6×Q8⋊C9central extension (φ=1)432(C2xC6).19(C3xA4)432,334
(C2×C6).20(C3×A4) = C2×Q8⋊3- 1+2central extension (φ=1)144(C2xC6).20(C3xA4)432,335
(C2×C6).21(C3×A4) = C2×Q8⋊He3central extension (φ=1)144(C2xC6).21(C3xA4)432,336
(C2×C6).22(C3×A4) = A4×C2×C18central extension (φ=1)108(C2xC6).22(C3xA4)432,546
(C2×C6).23(C3×A4) = C22×C9⋊A4central extension (φ=1)108(C2xC6).23(C3xA4)432,547
(C2×C6).24(C3×A4) = C2×C6×C3.A4central extension (φ=1)108(C2xC6).24(C3xA4)432,548
(C2×C6).25(C3×A4) = C22×C32.A4central extension (φ=1)36(C2xC6).25(C3xA4)432,549
(C2×C6).26(C3×A4) = C22×C32⋊A4central extension (φ=1)36(C2xC6).26(C3xA4)432,550
(C2×C6).27(C3×A4) = C3×C6×SL2(𝔽3)central extension (φ=1)144(C2xC6).27(C3xA4)432,698

׿
×
𝔽