Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C3xA4

Direct product G=NxQ with N=C2xC6 and Q=C3xA4
dρLabelID
A4xC62108A4xC6^2432,770

Semidirect products G=N:Q with N=C2xC6 and Q=C3xA4
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C3xA4) = C3xA42φ: C3xA4/A4C3 ⊆ Aut C2xC6369(C2xC6):1(C3xA4)432,750
(C2xC6):2(C3xA4) = C32xC22:A4φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6):2(C3xA4)432,771

Non-split extensions G=N.Q with N=C2xC6 and Q=C3xA4
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C3xA4) = A4xC3.A4φ: C3xA4/A4C3 ⊆ Aut C2xC6549(C2xC6).1(C3xA4)432,524
(C2xC6).2(C3xA4) = C3.A42φ: C3xA4/A4C3 ⊆ Aut C2xC6369(C2xC6).2(C3xA4)432,525
(C2xC6).3(C3xA4) = C24:He3φ: C3xA4/A4C3 ⊆ Aut C2xC6369(C2xC6).3(C3xA4)432,526
(C2xC6).4(C3xA4) = C24:3- 1+2φ: C3xA4/A4C3 ⊆ Aut C2xC6549(C2xC6).4(C3xA4)432,527
(C2xC6).5(C3xA4) = C24:23- 1+2φ: C3xA4/A4C3 ⊆ Aut C2xC6369(C2xC6).5(C3xA4)432,528
(C2xC6).6(C3xA4) = C9xC42:C3φ: C3xA4/C2xC6C3 ⊆ Aut C2xC61083(C2xC6).6(C3xA4)432,99
(C2xC6).7(C3xA4) = C42:3- 1+2φ: C3xA4/C2xC6C3 ⊆ Aut C2xC61083(C2xC6).7(C3xA4)432,100
(C2xC6).8(C3xA4) = C3xC42:C9φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6).8(C3xA4)432,101
(C2xC6).9(C3xA4) = C122.C3φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6363(C2xC6).9(C3xA4)432,102
(C2xC6).10(C3xA4) = C42:He3φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6363(C2xC6).10(C3xA4)432,103
(C2xC6).11(C3xA4) = C32xC42:C3φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6).11(C3xA4)432,463
(C2xC6).12(C3xA4) = C9xC22:A4φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6).12(C3xA4)432,551
(C2xC6).13(C3xA4) = C24:43- 1+2φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6).13(C3xA4)432,552
(C2xC6).14(C3xA4) = C3xC24:C9φ: C3xA4/C2xC6C3 ⊆ Aut C2xC6108(C2xC6).14(C3xA4)432,553
(C2xC6).15(C3xA4) = C62.A4φ: C3xA4/C2xC6C3 ⊆ Aut C2xC636(C2xC6).15(C3xA4)432,554
(C2xC6).16(C3xA4) = C62:A4φ: C3xA4/C2xC6C3 ⊆ Aut C2xC636(C2xC6).16(C3xA4)432,555
(C2xC6).17(C3xA4) = C18xSL2(F3)central extension (φ=1)144(C2xC6).17(C3xA4)432,327
(C2xC6).18(C3xA4) = C2xC18.A4central extension (φ=1)144(C2xC6).18(C3xA4)432,328
(C2xC6).19(C3xA4) = C6xQ8:C9central extension (φ=1)432(C2xC6).19(C3xA4)432,334
(C2xC6).20(C3xA4) = C2xQ8:3- 1+2central extension (φ=1)144(C2xC6).20(C3xA4)432,335
(C2xC6).21(C3xA4) = C2xQ8:He3central extension (φ=1)144(C2xC6).21(C3xA4)432,336
(C2xC6).22(C3xA4) = A4xC2xC18central extension (φ=1)108(C2xC6).22(C3xA4)432,546
(C2xC6).23(C3xA4) = C22xC9:A4central extension (φ=1)108(C2xC6).23(C3xA4)432,547
(C2xC6).24(C3xA4) = C2xC6xC3.A4central extension (φ=1)108(C2xC6).24(C3xA4)432,548
(C2xC6).25(C3xA4) = C22xC32.A4central extension (φ=1)36(C2xC6).25(C3xA4)432,549
(C2xC6).26(C3xA4) = C22xC32:A4central extension (φ=1)36(C2xC6).26(C3xA4)432,550
(C2xC6).27(C3xA4) = C3xC6xSL2(F3)central extension (φ=1)144(C2xC6).27(C3xA4)432,698

׿
x
:
Z
F
o
wr
Q
<