Copied to
clipboard

G = C3×A4order 36 = 22·32

Direct product of C3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×A4, C22⋊C32, (C2×C6)⋊C3, SmallGroup(36,11)

Series: Derived Chief Lower central Upper central

C1C22 — C3×A4
C1C22A4 — C3×A4
C22 — C3×A4
C1C3

Generators and relations for C3×A4
 G = < a,b,c,d | a3=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
4C3
4C3
4C3
3C6
4C32

Character table of C3×A4

 class 123A3B3C3D3E3F3G3H6A6B
 size 131144444433
ρ1111111111111    trivial
ρ21111ζ3ζ32ζ32ζ3ζ3ζ3211    linear of order 3
ρ311ζ3ζ32ζ3ζ321ζ321ζ3ζ3ζ32    linear of order 3
ρ411ζ3ζ3211ζ3ζ3ζ32ζ32ζ3ζ32    linear of order 3
ρ511ζ32ζ311ζ32ζ32ζ3ζ3ζ32ζ3    linear of order 3
ρ611ζ32ζ3ζ32ζ31ζ31ζ32ζ32ζ3    linear of order 3
ρ71111ζ32ζ3ζ3ζ32ζ32ζ311    linear of order 3
ρ811ζ3ζ32ζ32ζ3ζ321ζ31ζ3ζ32    linear of order 3
ρ911ζ32ζ3ζ3ζ32ζ31ζ321ζ32ζ3    linear of order 3
ρ103-133000000-1-1    orthogonal lifted from A4
ρ113-1-3-3-3/2-3+3-3/2000000ζ6ζ65    complex faithful
ρ123-1-3+3-3/2-3-3-3/2000000ζ65ζ6    complex faithful

Permutation representations of C3×A4
On 12 points - transitive group 12T20
Generators in S12
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
(1 4)(2 5)(3 6)(7 12)(8 10)(9 11)
(1 10)(2 11)(3 12)(4 8)(5 9)(6 7)
(1 2 3)(4 11 7)(5 12 8)(6 10 9)

G:=sub<Sym(12)| (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,10)(2,11)(3,12)(4,8)(5,9)(6,7), (1,2,3)(4,11,7)(5,12,8)(6,10,9)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,10)(2,11)(3,12)(4,8)(5,9)(6,7), (1,2,3)(4,11,7)(5,12,8)(6,10,9) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12)], [(1,4),(2,5),(3,6),(7,12),(8,10),(9,11)], [(1,10),(2,11),(3,12),(4,8),(5,9),(6,7)], [(1,2,3),(4,11,7),(5,12,8),(6,10,9)]])

G:=TransitiveGroup(12,20);

On 18 points - transitive group 18T8
Generators in S18
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(4 16)(5 17)(6 18)(10 13)(11 14)(12 15)
(1 7)(2 8)(3 9)(10 13)(11 14)(12 15)
(1 16 10)(2 17 11)(3 18 12)(4 13 7)(5 14 8)(6 15 9)

G:=sub<Sym(18)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (1,16,10)(2,17,11)(3,18,12)(4,13,7)(5,14,8)(6,15,9)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18), (4,16)(5,17)(6,18)(10,13)(11,14)(12,15), (1,7)(2,8)(3,9)(10,13)(11,14)(12,15), (1,16,10)(2,17,11)(3,18,12)(4,13,7)(5,14,8)(6,15,9) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(4,16),(5,17),(6,18),(10,13),(11,14),(12,15)], [(1,7),(2,8),(3,9),(10,13),(11,14),(12,15)], [(1,16,10),(2,17,11),(3,18,12),(4,13,7),(5,14,8),(6,15,9)]])

G:=TransitiveGroup(18,8);

C3×A4 is a maximal subgroup of   C3⋊S4  C9⋊A4  C32⋊A4
C3×A4 is a maximal quotient of   C9⋊A4  C32.A4  C32⋊A4

Polynomial with Galois group C3×A4 over ℚ
actionf(x)Disc(f)
12T20x12-3x11-30x10+73x9+303x8-603x7-1171x6+2034x5+1254x4-2511x3+420x2+228x+8224·316·76·1636·61257412

Matrix representation of C3×A4 in GL3(𝔽7) generated by

400
040
004
,
061
060
160
,
600
601
610
,
010
001
100
G:=sub<GL(3,GF(7))| [4,0,0,0,4,0,0,0,4],[0,0,1,6,6,6,1,0,0],[6,6,6,0,0,1,0,1,0],[0,0,1,1,0,0,0,1,0] >;

C3×A4 in GAP, Magma, Sage, TeX

C_3\times A_4
% in TeX

G:=Group("C3xA4");
// GroupNames label

G:=SmallGroup(36,11);
// by ID

G=gap.SmallGroup(36,11);
# by ID

G:=PCGroup([4,-3,-3,-2,2,218,435]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C3×A4 in TeX
Character table of C3×A4 in TeX

׿
×
𝔽