extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3.S4) = Q8.D27 | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 432 | 4- | C6.1(C3.S4) | 432,37 |
C6.2(C3.S4) = Q8⋊D27 | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 216 | 4+ | C6.2(C3.S4) | 432,38 |
C6.3(C3.S4) = C18.S4 | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 108 | 6- | C6.3(C3.S4) | 432,39 |
C6.4(C3.S4) = C2×C9.S4 | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 54 | 6+ | C6.4(C3.S4) | 432,224 |
C6.5(C3.S4) = C32.3CSU2(𝔽3) | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 432 | | C6.5(C3.S4) | 432,255 |
C6.6(C3.S4) = C32.3GL2(𝔽3) | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 216 | | C6.6(C3.S4) | 432,256 |
C6.7(C3.S4) = C62.10Dic3 | φ: C3.S4/C3.A4 → C2 ⊆ Aut C6 | 108 | | C6.7(C3.S4) | 432,259 |
C6.8(C3.S4) = C3×Q8.D9 | central extension (φ=1) | 144 | 4 | C6.8(C3.S4) | 432,244 |
C6.9(C3.S4) = C3×Q8⋊D9 | central extension (φ=1) | 144 | 4 | C6.9(C3.S4) | 432,246 |
C6.10(C3.S4) = C3×C6.S4 | central extension (φ=1) | 36 | 6 | C6.10(C3.S4) | 432,250 |